Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Solution 1 (Trigonometric Identities)) |
(→Alternate proof of the two tangent squares formula) |
||
(34 intermediate revisions by 13 users not shown) | |||
Line 11: | Line 11: | ||
− | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{ | + | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath> |
Line 33: | Line 33: | ||
<cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath> | <cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath> | ||
− | + | ||
− | |||
<cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath> | <cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath> | ||
Line 51: | Line 50: | ||
~tsun26 | ~tsun26 | ||
+ | |||
+ | ==Solution 2 (Another Identity)== | ||
+ | |||
+ | First, notice that | ||
+ | |||
+ | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath> | ||
+ | |||
+ | |||
+ | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath> | ||
+ | |||
+ | |||
+ | Here, we make use of the fact that | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \tan^2 x+\tan^2 (\frac{\pi}{2}-x) &= (\tan x - \tan (\frac{\pi}{2} - x))^2 + 2\\ | ||
+ | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + \tan x \tan (\frac{\pi}{2} - x))^2 + 2~~~~(\mathrm{difference~of~two~tan})\\ | ||
+ | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + 1))^2 + 2\\ | ||
+ | &= 4\tan^2 (\frac{\pi}{2} - 2x) + 2 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | (\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}) &= (4\tan^2 (\frac{\pi}{2} - \frac{\pi}{16} \cdot 2) + 2)(4\tan^2 (\frac{\pi}{2} - \frac{3\pi}{16} \cdot 2) + 2)\\ | ||
+ | &= (4\tan^2 \frac{3\pi}{8} + 2)(4\tan^2 \frac{\pi}{8} + 2)\\ | ||
+ | &= 16\tan^2 \frac{3\pi}{8} \cdot \tan^2 \frac{\pi}{8} + 8(\tan^2 \frac{3\pi}{8} + \tan^2 \frac{\pi}{8}) + 4\\ | ||
+ | &= 16 + 8(4\tan^2 (\frac{\pi}{2} - \frac{\pi}{8} \cdot 2) + 2) + 4\\ | ||
+ | &= 16 + 8(4\tan^2 \frac{\pi}{4} + 2) + 4\\ | ||
+ | &= 16 + 8(4 + 2) + 4\\ | ||
+ | &= 68 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>. | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Reda_mandymath reda_mandymath] | ||
+ | |||
+ | ==Solution 3 (Complex Numbers)== | ||
+ | Let <math>\theta = \frac{\pi}{16}</math>. Then, | ||
+ | <cmath> | ||
+ | y = e^{8i\theta} = e^{\frac{\pi}{2} i} = (\cos \theta + i\sin \theta)^8 = 0 + i. | ||
+ | </cmath> | ||
+ | Expanding by using a binomial expansion, | ||
+ | <cmath> | ||
+ | \Re(y) = \cos^8 \theta - 28 \cos^6 \theta \sin^2 \theta + 70 \cos^4 \theta \sin^4 \theta - 28 \cos^2 \theta \sin^6 \theta + \sin^8\theta =0. | ||
+ | </cmath> | ||
+ | Divide by <math>\cos^8 \theta</math> and notice we can set <math>\frac{\sin \theta}{\cos \theta} = x</math> where <math>x = \tan(\theta)</math>. Then, define <math>f(x)</math> so that | ||
+ | <cmath> | ||
+ | f(x) = 1 - 28 x^2 + 70 x^4 - 28 x^6 + x^8. | ||
+ | </cmath> | ||
+ | |||
+ | Notice that we can have <math>(\cos \theta_k + i \sin \theta_k)^8 = 0 \pm i</math> because we are only considering the real parts. We only have this when <math>k \equiv 1,3 \mod 4</math>, meaning <math>k \equiv 1 \mod 2</math>. This means that we have <math>k = 1,3,5,7,9,11,13,15</math> as unique roots (we get them from <math>k\theta \in [0,\pi]</math>) and by using the fact that <math>\tan(\pi - \theta) = -\tan \theta</math>, we get <cmath>x \in \left\{\tan \theta, -\tan \theta, \tan \left(3 \theta \right), -\tan \left(3 \theta \right), \tan \left(5 \theta \right), -\tan \left(5 \theta \right), \tan \left(7 \theta \right), -\tan \left(7 \theta \right) \right\} </cmath> | ||
+ | Since we have a monic polynomial, by the Fundamental Theorem of Algebra, | ||
+ | <cmath>f(x) = (x-\tan \theta)(x+\tan \theta) (x-\tan \left(3 \theta \right))(x+\tan \left(3 \theta \right)) (x-\tan \left(5 \theta \right))(x+\tan \left(5 \theta \right))(x-\tan\left(7 \theta \right))(x+\tan \left(7 \theta \right))</cmath> | ||
+ | <cmath>f(x) = (x^2 - \tan^2 \theta)(x^2 - \tan^2 (3\theta))(x^2 - \tan^2 (5\theta))(x^2 - \tan^2 (7\theta)) | ||
+ | </cmath> | ||
+ | Looking at the <math>x^4</math> term in the expansion for <math>f(x)</math> and using vietas gives us | ||
+ | <cmath> | ||
+ | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 \theta \tan^2 (7\theta) + \tan^2 (3\theta) \tan^2 (5\theta) | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) = \frac{70}{1} = 70. | ||
+ | </cmath> | ||
+ | Since <math>\tan\left(\frac{\pi}{2} - \theta\right) = \cot \theta</math> and <math> \tan \theta \cot \theta = 1</math> | ||
+ | <cmath> | ||
+ | \tan^2 \theta \tan^2 (7\theta) = \tan^2 (3\theta) \tan^2 (5\theta) = 1. | ||
+ | </cmath> | ||
+ | Therefore | ||
+ | <cmath> | ||
+ | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) + 2 = 70. | ||
+ | </cmath> | ||
+ | <cmath> | ||
+ | \tan^2 \theta \tan^2 (3\theta) + \tan^2 \theta \tan^2 (5\theta) + \tan^2 (3\theta) \tan^2 (7\theta) + \tan^2 (5\theta) \tan^2 (7\theta) = \boxed{\textbf{(B) } 68} | ||
+ | </cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:KEVIN_LIU KEVIN_LIU] | ||
+ | |||
+ | ==Solution 5 (Transformation)== | ||
+ | |||
+ | Set x = <math>\pi/16</math> , 7x = <math>\pi/2</math> - x , | ||
+ | set C7 = <math>cos^2(7x)</math> , C5 = <math>cos^2(5x)</math>, C3 = <math>cos^2(3x)</math>, C= <math>cos^2(x)</math> , S2 = <math>sin^2(2x)</math> , S6 = <math>sin^2(6x), etc.</math> | ||
+ | |||
+ | First, notice that | ||
+ | <cmath>\tan^2 x \cdot \tan^2 3x + \tan^2 3x \cdot \tan^2 5x+\tan^2 3x \cdot \tan^2 7x+\tan^2 5x \cdot \tan^2 7x</cmath> | ||
+ | <cmath>=(\tan^2x+\tan^2 7x)(\tan^23x+\tan^2 5x)</cmath> | ||
+ | <cmath>=(\frac{1}{C} - 1 +\frac{1}{C7}-1)(\frac{1}{C3} - 1 +\frac{1}{C5}-1)</cmath> | ||
+ | <cmath>=(\frac{C+C7}{C \cdot C7} -2)( \frac{C3+C5}{C3 \cdot C5} -2)</cmath> | ||
+ | <cmath>=(\frac{1}{C \cdot S} -2)( \frac{1}{C3 \cdot S3} -2)</cmath> | ||
+ | <cmath>=(\frac{4}{S2} -2)( \frac{4}{S6} -2)</cmath> | ||
+ | <cmath>=4(\frac{2-S2}{S2})( \frac{2-S6}{S6})</cmath> | ||
+ | <cmath>=4(\frac{4-2 \cdot S2-S \cdot S6 }{S2 \cdot S6}+1)</cmath> | ||
+ | <cmath>=4 + \frac{8}{S2 \cdot S6} </cmath> | ||
+ | <cmath>=4 + \frac{32}{S4} </cmath> | ||
+ | <cmath>=4 + 64 </cmath> | ||
+ | <cmath>= 68 </cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
+ | |||
+ | ==Solution 6 (Half angle formula twice)== | ||
+ | So from the question we have: | ||
+ | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath> | ||
+ | |||
+ | |||
+ | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath> | ||
+ | |||
+ | Using <math>\tan^2\frac{\theta}{2}=\frac{1-\cos\theta}{1+\cos\theta}</math> | ||
+ | |||
+ | |||
+ | <cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1+\cos\frac{7\pi}{8}}{1-\cos\frac{7\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1+\cos\frac{5\pi}{8}}{1-\cos\frac{5\pi}{8}})</cmath> | ||
+ | |||
+ | Using <math>\cos\theta=-\cos(\pi-\theta)</math> | ||
+ | |||
+ | <cmath>=(\frac{1+\cos\frac{\pi}{8}}{1-\cos\frac{\pi}{8}}+\frac{1-\cos\frac{\pi}{8}}{1+\cos\frac{\pi}{8}})(\frac{1+\cos\frac{3\pi}{8}}{1-\cos\frac{3\pi}{8}}+\frac{1-\cos\frac{3\pi}{8}}{1+\cos\frac{3\pi}{8}})</cmath> | ||
+ | |||
+ | <cmath>=(\frac{(1+\cos\frac{\pi}{8})^2+(1-\cos\frac{\pi}{8})^2}{1-\cos^2\frac{\pi}{8}})(\frac{(1+\cos\frac{3\pi}{8})^2+(1-\cos\frac{3\pi}{8})^2}{1-\cos^2\frac{3\pi}{8}})</cmath> | ||
+ | |||
+ | <cmath>=(\frac{2+2\cos^2\frac{\pi}{8}}{1-\cos^2\frac{\pi}{8}})(\frac{2+2\cos^2\frac{3\pi}{8}}{1-\cos^2\frac{3\pi}{8}})</cmath> | ||
+ | |||
+ | Using <math>\cos^2\frac{\theta}{2}=\frac{1+\cos\theta}{2}</math> | ||
+ | |||
+ | <cmath>=(\frac{2+1+\cos\frac{\pi}{4}}{1-\frac{1+\cos\frac{\pi}{4}}{2}})(\frac{2+1+\cos\frac{3\pi}{4}}{1-\frac{1+\cos\frac{3\pi}{4}}{2}})</cmath> | ||
+ | |||
+ | <cmath>=(\frac{12+2\sqrt{2}}{4-2\sqrt{2}})(\frac{12-2\sqrt{2}}{4+2\sqrt{2}})</cmath> | ||
+ | |||
+ | <cmath>=\frac{136}{2}=\boxed{\textbf{B) }68 }</cmath> | ||
+ | |||
+ | ~ERiccc | ||
+ | ==Solution 7(single formula)== | ||
+ | <cmath>\cot \alpha - \tan \alpha = 2 \cot 2 \alpha \implies \cot^2 \alpha + \tan^2 \alpha = 4 \cot^2 2 \alpha + 2.</cmath> | ||
+ | We use <math>\alpha = \frac {\pi}{16}</math> for <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}).</math> | ||
+ | |||
+ | <cmath>(\tan^2 \alpha + \cot^2 \alpha)(\tan^2 (\frac{\pi}{4} - \alpha) + \cot^2 (\frac{\pi}{4} - \alpha)) = (4 \cot^2 2 \alpha + 2)(4 \cot^2 (\frac{\pi}{2} - 2\alpha) +2) =</cmath> | ||
+ | <cmath>= 4 \cdot(4+ 2\tan^2 2\alpha + 2\cot^2 2\alpha +1) = 20 + 8 \cdot (4 \cot^2 4 \alpha +2) = 68.\blacksquare</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 8(just do it ✅)== | ||
+ | Since A is too big and E is too small, There is only 3 options left, you can make a guess now, however, estimating the value of it is also okay. You will get 68 for the final answer. | ||
+ | |||
+ | ==Solution 9 (Vietas)== | ||
+ | As the above solutions noted, we can factor the expression into <math>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</math>. | ||
+ | |||
+ | Before we directly solve this problem, let's analyze the roots of <math>\tan(4\tan^{-1}{x}) = 1</math>, or equivalently using tangent expansion formula, <math>\frac{1-6x^2+x^4}{4x-4x^3}=1</math>, which implies <math>x^4+4x^3-6x^2-4x+1=0</math>. Now note that the roots of this equation are precisely <math>\tan\frac{\pi}{16}, \tan\frac{5\pi}{16}, \tan\frac{9\pi}{16}, \tan\frac{13\pi}{16}</math>, so the second symmetric sum of these four numbers is <math>6</math> by Vieta's. Thus, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath> | ||
+ | Upon further inspection, <math>\tan\frac{\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{13\pi}{16}=-2</math> using the fact that <math>\tan(x)*\tan(x + \pi/2) = -1</math>. Hence, we have <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}-1+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}-1+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=6</cmath> | ||
+ | <cmath>\tan\frac{\pi}{16}\tan\frac{5\pi}{16}+\tan\frac{\pi}{16}\tan\frac{13\pi}{16}+\tan\frac{5\pi}{16}\tan\frac{9\pi}{16}+\tan\frac{9\pi}{16}\tan\frac{13\pi}{16}=8</cmath> | ||
+ | <cmath>(\tan\frac{\pi}{16}+\tan\frac{9\pi}{16})(\tan\frac{5\pi}{16}+\tan\frac{13\pi}{16})=8</cmath> | ||
+ | |||
+ | Now, we return to the problem statement, where we see a similar squared sum. We use this motivation to square our equation above to obtain | ||
+ | |||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16}-2)(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16}-2)=64</cmath> | ||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})+4=64</cmath> | ||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{9\pi}{16})(\tan^2\frac{5\pi}{16}+\tan^2\frac{13\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath> | ||
+ | Then, use the fact that <math>\tan^2{x}=\tan^2{\pi/2-x}</math> to get | ||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16})=60</cmath> | ||
+ | Hold on; the first term is exactly what we are solving for! It thus suffices to find <math>\tan^2\frac{\pi}{16}+\tan^2\frac{5\pi}{16}+\tan^2\frac{9\pi}{16}+\tan^2\frac{13\pi}{16}</math>. Fortunately, this is just <math>{S_1}^2-2{S_2}</math> (Where <math>S_n</math> is the nth symmetric sum), with relation to roots of <math>x^4+4x^3-6x^2-4x+1=0</math>. By Vieta's, this is just <math>(-4)^2-2(6)=4</math>. | ||
+ | |||
+ | Finally, we plug this value into our equation to obtain | ||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})-2(4)=60</cmath> | ||
+ | <cmath>(\tan^2\frac{\pi}{16}+\tan^2\frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2\frac{5\pi}{16})=\boxed{68}</cmath> | ||
+ | |||
+ | ==Alternate proof of the two tangent squares formula== | ||
+ | |||
+ | We want to simplify <math>\tan^{2}(x)</math> + <math>\tan^{2}(\frac{\pi}{2} - x)</math>. We make use of the fact that <math>\tan(\frac{\pi}{2} - x)</math> = <math>\cot(x)</math>. Then, the expression becomes <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math>. Notice we can write: | ||
+ | <math>(tanx + cotx)^{2}</math> as <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> + 2 as tangent and cotangent are reciprocals of each other. Then, the sum of the tangent and cotangent can be simplified to <math>\frac{\sec^{2}{x}}{tanx}</math>. Using the fact that secant is the reciprocal of cosine and tangent is the ratio of sine and cosine, we can simplify that expression to <math>\frac{1}{sinxcosx}</math>. So, we have that: <math>\tan^{2}(x)</math> + <math>\cot^{2}(x)</math> = <math>\frac{1}{sinxcosx}^{2}</math> - <math>{2}</math> which can be simplfied to: 2(<math>\frac{2}{sin^{2}(2x)}</math> - 1) or (<math>\frac{4}{sin^{2}(2x)}</math> - 2) as stated in earlier solutions. | ||
+ | |||
+ | ~ilikemath247365 | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:32, 23 December 2024
Contents
- 1 Problem
- 2 Solution 1 (Trigonometric Identities)
- 3 Solution 2 (Another Identity)
- 4 Solution 3 (Complex Numbers)
- 5 Solution 5 (Transformation)
- 6 Solution 6 (Half angle formula twice)
- 7 Solution 7(single formula)
- 8 Solution 8(just do it ✅)
- 9 Solution 9 (Vietas)
- 10 Alternate proof of the two tangent squares formula
- 11 See also
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that
Here, we make use of the fact that
Hence,
Note that
Hence,
Therefore, the answer is .
~tsun26
Solution 2 (Another Identity)
First, notice that
Here, we make use of the fact that
Hence,
Therefore, the answer is .
Solution 3 (Complex Numbers)
Let . Then, Expanding by using a binomial expansion, Divide by and notice we can set where . Then, define so that
Notice that we can have because we are only considering the real parts. We only have this when , meaning . This means that we have as unique roots (we get them from ) and by using the fact that , we get Since we have a monic polynomial, by the Fundamental Theorem of Algebra, Looking at the term in the expansion for and using vietas gives us Since and Therefore
Solution 5 (Transformation)
Set x = , 7x = - x , set C7 = , C5 = , C3 = , C= , S2 = , S6 =
First, notice that
Solution 6 (Half angle formula twice)
So from the question we have:
Using
Using
Using
~ERiccc
Solution 7(single formula)
We use for
vladimir.shelomovskii@gmail.com, vvsss
Solution 8(just do it ✅)
Since A is too big and E is too small, There is only 3 options left, you can make a guess now, however, estimating the value of it is also okay. You will get 68 for the final answer.
Solution 9 (Vietas)
As the above solutions noted, we can factor the expression into .
Before we directly solve this problem, let's analyze the roots of , or equivalently using tangent expansion formula, , which implies . Now note that the roots of this equation are precisely , so the second symmetric sum of these four numbers is by Vieta's. Thus, we have Upon further inspection, using the fact that . Hence, we have
Now, we return to the problem statement, where we see a similar squared sum. We use this motivation to square our equation above to obtain
Then, use the fact that to get Hold on; the first term is exactly what we are solving for! It thus suffices to find . Fortunately, this is just (Where is the nth symmetric sum), with relation to roots of . By Vieta's, this is just .
Finally, we plug this value into our equation to obtain
Alternate proof of the two tangent squares formula
We want to simplify + . We make use of the fact that = . Then, the expression becomes + . Notice we can write: as + + 2 as tangent and cotangent are reciprocals of each other. Then, the sum of the tangent and cotangent can be simplified to . Using the fact that secant is the reciprocal of cosine and tangent is the ratio of sine and cosine, we can simplify that expression to . So, we have that: + = - which can be simplfied to: 2( - 1) or ( - 2) as stated in earlier solutions.
~ilikemath247365
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.