ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2016 AMC 8 Problems"

(Problem 1)
(108 intermediate revisions by 48 users not shown)
Line 1: Line 1:
 +
{{AMC8 Problems|year=2016|}}
 
==Problem 1==
 
==Problem 1==
  
+
The longest professional tennis match lasted a total of 11 hours and 5 minutes. How many minutes is that?
The longest professional tennis match ever played lasted a total of <math>11</math> hours and <math>5</math> minutes. How many minutes was this?
 
  
<math>\textbf{(A) }605\qquad\textbf{(B) }655\qquad\textbf{(C) }665\qquad\textbf{(D) }1005\qquad \textbf{(E) }1105</math>
+
<math>\textbf{(A) } 605 \qquad\textbf{(B) } 655\qquad\textbf{(C) } 665\qquad\textbf{(D) } 1005\qquad \textbf{(E) } 1105</math>
  
 
[[2016 AMC 8 Problems/Problem 1|Solution
 
[[2016 AMC 8 Problems/Problem 1|Solution
]]
+
]] yip4eeee
  
 
==Problem 2==
 
==Problem 2==
  
 
In rectangle <math>ABCD</math>, <math>AB=6</math> and <math>AD=8</math>.  Point <math>M</math> is the midpoint of <math>\overline{AD}</math>.  What is the area of <math>\triangle AMC</math>?
 
In rectangle <math>ABCD</math>, <math>AB=6</math> and <math>AD=8</math>.  Point <math>M</math> is the midpoint of <math>\overline{AD}</math>.  What is the area of <math>\triangle AMC</math>?
 +
 +
<asy>draw((0,4)--(0,0)--(6,0)--(6,8)--(0,8)--(0,4)--(6,8)--(0,0));
 +
label("$A$", (0,0), SW);
 +
label("$B$", (6, 0), SE);
 +
label("$C$", (6,8), NE);
 +
label("$D$", (0, 8), NW);
 +
label("$M$", (0, 4), W);
 +
label("$4$", (0, 2), W);
 +
label("$6$", (3, 0), S);</asy>
  
 
<math>\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24</math>
 
<math>\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24</math>
Line 29: Line 38:
 
==Problem 4==
 
==Problem 4==
  
When Cheenu was a boy he could run <math>15</math> miles in <math>3</math> hours and <math>30</math> minutes. As an old man he can now walk <math>10</math> miles in <math>4</math> hours. How many minutes longer does it take for him to walk a mile now compared to when he was a boy?
+
When Cheenu was a boy, he could run <math>15</math> miles in <math>3</math> hours and <math>30</math> minutes. As an old man, he can now walk <math>10</math> miles in <math>4</math> hours. How many minutes longer does it take for him to travel a mile now compared to when he was a boy?
  
 
<math>\textbf{(A) }6\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad \textbf{(E) }30</math>
 
<math>\textbf{(A) }6\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad \textbf{(E) }30</math>
Line 50: Line 59:
  
 
[[2016 AMC 8 Problems/Problem 5|Solution
 
[[2016 AMC 8 Problems/Problem 5|Solution
 +
]]
 +
 +
==Problem 6==
 +
The following bar graph represents the length (in letters) of the names of 19 people. What is the median length of these names?
 +
<asy>
 +
unitsize(0.9cm);
 +
draw((-0.5,0)--(10,0), linewidth(1.5));
 +
draw((-0.5,1)--(10,1));
 +
draw((-0.5,2)--(10,2));
 +
draw((-0.5,3)--(10,3));
 +
draw((-0.5,4)--(10,4));
 +
draw((-0.5,5)--(10,5));
 +
draw((-0.5,6)--(10,6));
 +
draw((-0.5,7)--(10,7));
 +
label("frequency",(-0.5,8));
 +
label("0", (-1, 0));
 +
label("1", (-1, 1));
 +
label("2", (-1, 2));
 +
label("3", (-1, 3));
 +
label("4", (-1, 4));
 +
label("5", (-1, 5));
 +
label("6", (-1, 6));
 +
label("7", (-1, 7));
 +
filldraw((0,0)--(0,7)--(1,7)--(1,0)--cycle, black);
 +
filldraw((2,0)--(2,3)--(3,3)--(3,0)--cycle, black);
 +
filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle, black);
 +
filldraw((6,0)--(6,4)--(7,4)--(7,0)--cycle, black);
 +
filldraw((8,0)--(8,4)--(9,4)--(9,0)--cycle, black);
 +
label("3", (0.5, -0.5));
 +
label("4", (2.5, -0.5));
 +
label("5", (4.5, -0.5));
 +
label("6", (6.5, -0.5));
 +
label("7", (8.5, -0.5));
 +
label("name length", (4.5, -1));
 +
</asy>
 +
 +
<math>\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }7</math>
 +
 +
[[2016 AMC 8 Problems/Problem 6|Solution
 
]]
 
]]
  
Line 63: Line 111:
 
==Problem 8==
 
==Problem 8==
  
Find the value of the expression
+
Find the value of the expression:
 
<cmath>100-98+96-94+92-90+\cdots+8-6+4-2.</cmath><math>\textbf{(A) }20\qquad\textbf{(B) }40\qquad\textbf{(C) }50\qquad\textbf{(D) }80\qquad \textbf{(E) }100</math>
 
<cmath>100-98+96-94+92-90+\cdots+8-6+4-2.</cmath><math>\textbf{(A) }20\qquad\textbf{(B) }40\qquad\textbf{(C) }50\qquad\textbf{(D) }80\qquad \textbf{(E) }100</math>
  
Line 69: Line 117:
 
]]
 
]]
  
{{MAA Notice}}
+
==Problem 9==
 +
 
 +
What is the sum of the distinct prime integer divisors of <math>2016</math>?
 +
 
 +
<math>\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }16\qquad\textbf{(D) }49\qquad \textbf{(E) }63</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 9|Solution
 +
]]
 +
 
 +
==Problem 10==
 +
 
 +
Suppose that <math>a * b</math> means <math>3a-b.</math> What is the value of <math>x</math> if
 +
<cmath>2 * (5 * x)=1</cmath>
 +
<math>\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14.</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 10|Solution
 +
]]
 +
 
 +
==Problem 11==
 +
 
 +
Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is <math>132.</math>
 +
 
 +
<math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 11|Solution
 +
]]
 +
 
 +
==Problem 12==
 +
 
 +
Jefferson Middle School has the same number of boys and girls. <math>\frac{3}{4}</math> of the girls and <math>\frac{2}{3}</math>
 +
of the boys went on a field trip. What fraction of the students on the field trip were girls?
 +
 
 +
<math>\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 12|Solution
 +
]]
 +
 
 +
==Problem 13==
 +
 
 +
Two different numbers are randomly selected from the set <math>\{ - 2, -1, 0, 3, 4, 5\}</math> and multiplied together. What is the probability that the product is <math>0</math>?
 +
 
 +
<math>\textbf{(A) }\dfrac{1}{6}\qquad\textbf{(B) }\dfrac{1}{5}\qquad\textbf{(C) }\dfrac{1}{4}\qquad\textbf{(D) }\dfrac{1}{3}\qquad \textbf{(E) }\dfrac{1}{2}</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 13|Solution
 +
]]
 +
 
 +
==Problem 14==
 +
 
 +
Karl's car uses a gallon of gas every <math>35</math> miles, and his gas tank holds <math>14</math> gallons when it is full. One day, Karl started with a full tank of gas,
 +
drove <math>350</math> miles, bought <math>8</math> gallons of gas, and continued driving to his destination. When he arrived, his gas tank was half full. How many miles did Karl drive that day?
 +
 
 +
<math>\textbf{(A)}\mbox{ }525\qquad\textbf{(B)}\mbox{ }560\qquad\textbf{(C)}\mbox{ }595\qquad\textbf{(D)}\mbox{ }665\qquad\textbf{(E)}\mbox{ }735</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 14|Solution
 +
]]
 +
 
 +
==Problem 15==
 +
 
 +
What is the largest power of <math>2</math> that is a divisor of <math>13^4 - 11^4</math>?
 +
 
 +
<math>\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 15|Solution
 +
]]
 +
 
 +
==Problem 16==
 +
 
 +
Annie and Bonnie are running laps around a <math>400</math>-meter oval track. They started together, but Annie has pulled ahead because she runs <math>25\%</math> faster than Bonnie. How many laps will Annie have run when she first passes Bonnie?
 +
 
 +
<math>\textbf{(A) }1\dfrac{1}{4}\qquad\textbf{(B) }3\dfrac{1}{3}\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }25</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 16|Solution
 +
]]
 +
 
 +
==Problem 17==
 +
 
 +
An ATM password at Fred's Bank is composed of four digits from <math>0</math> to <math>9</math>, with repeated digits allowable. If no password may begin with the sequence <math>9,1,1,</math> then how many passwords are possible?
 +
 
 +
<math>\textbf{(A)}\mbox{ }30\qquad\textbf{(B)}\mbox{ }7290\qquad\textbf{(C)}\mbox{ }9000\qquad\textbf{(D)}\mbox{ }9990\qquad\textbf{(E)}\mbox{ }9999</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 17|Solution
 +
]]
 +
 
 +
==Problem 18==
 +
 
 +
In an All-Area track meet, <math>216</math> sprinters enter a <math>100-</math>meter dash competition. The track has <math>6</math> lanes, so only <math>6</math> sprinters can compete at a time. At the end of each race, the five non-winners are eliminated, and the winner will compete again in a later race. How many races are needed to determine the champion sprinter?
 +
 
 +
<math>\textbf{(A)}\mbox{ }36\qquad\textbf{(B)}\mbox{ }42\qquad\textbf{(C)}\mbox{ }43\qquad\textbf{(D)}\mbox{ }60\qquad\textbf{(E)}\mbox{ }72</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 18|Solution
 +
]]
 +
 
 +
==Problem 19==
 +
 
 +
The sum of <math>25</math> consecutive even integers is <math>10,000</math>. What is the largest of these <math>25</math> consecutive integers?
 +
 
 +
<math>\textbf{(A)}\mbox{ }360\qquad\textbf{(B)}\mbox{ }388\qquad\textbf{(C)}\mbox{ }412\qquad\textbf{(D)}\mbox{ }416\qquad\textbf{(E)}\mbox{ }424</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 19|Solution
 +
]]
 +
 
 +
==Problem 20==
 +
 
 +
The least common multiple of <math>a</math> and <math>b</math> is <math>12</math>, and the least common multiple of <math>b</math> and <math>c</math> is <math>15</math>. What is the least possible value of the least common multiple of <math>a</math> and <math>c</math>?
 +
 
 +
<math>\textbf{(A) }20\qquad\textbf{(B) }30\qquad\textbf{(C) }60\qquad\textbf{(D) }120\qquad \textbf{(E) }180</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 20|Solution
 +
]]
 +
 
 +
==Problem 21==
 +
 
 +
A top hat contains 3 red chips and 2 green chips. Chips are drawn randomly, one at a time without replacement, until all 3 of the reds are drawn or until both green chips are drawn. What is the probability that the 3 reds are drawn?
 +
 
 +
<math>\textbf{(A) }\dfrac{3}{10}\qquad\textbf{(B) }\dfrac{2}{5}\qquad\textbf{(C) }\dfrac{1}{2}\qquad\textbf{(D) }\dfrac{3}{5}\qquad \textbf{(E) }\dfrac{7}{10}</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 21|Solution
 +
]]
 +
 
 +
==Problem 22==
 +
Rectangle <math>DEFA</math> below is a <math>3 \times 4</math> rectangle with <math>DC=CB=BA=1</math>. What is the area of the "bat wings" (shaded region)?<asy>
 +
draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0));
 +
draw((3,0)--(1,4)--(0,0));
 +
fill((0,0)--(1,4)--(1.5,3)--cycle, black);
 +
fill((3,0)--(2,4)--(1.5,3)--cycle, black);
 +
label("$A$",(3.05,4.2));
 +
label("$B$",(2,4.2));
 +
label("$C$",(1,4.2));
 +
label("$D$",(0,4.2));
 +
label("$E$", (0,-0.2));
 +
label("$F$", (3,-0.2));
 +
</asy>
 +
 
 +
<math>\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }4</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 22|Solution
 +
]]
 +
 
 +
==Problem 23==
 +
 
 +
Two congruent circles centered at points <math>A</math> and <math>B</math> each pass through the other circle's center. The line containing both <math>A</math> and <math>B</math> is extended to intersect the circles at points <math>C</math> and <math>D</math>. The circles intersect at two points, one of which is <math>E</math>. What is the degree measure of <math>\angle CED</math>?
 +
 
 +
<math>\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 23|Solution
 +
]]
 +
 
 +
==Problem 24==
 +
 
 +
The digits <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, and <math>5</math> are each used once to write a five-digit number <math>PQRST</math>. The three-digit number <math>PQR</math> is divisible by <math>4</math>, the three-digit number <math>QRS</math> is divisible by <math>5</math>, and the three-digit number <math>RST</math> is divisible by <math>3</math>. What is <math>P</math>?
 +
 
 +
<math>\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 24|Solution
 +
]]
 +
 
 +
==Problem 25==
 +
 
 +
A semicircle is inscribed in an isosceles triangle with base <math>16</math> and height <math>15</math> so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle?
 +
 
 +
<asy>draw((0,0)--(8,15)--(16,0)--(0,0));
 +
draw(arc((8,0),7.0588,0,180));</asy>
 +
 
 +
<math>\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}</math>
 +
 
 +
[[2016 AMC 8 Problems/Problem 25|Solution
 +
]]
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2016|before=[[2015 AMC 8 Problems|2015 AMC 8]]|after=[[2017 AMC 8 Problems|2017 AMC 8]]}}
 +
* [[AMC 8]]
 +
* [[AMC 8 Problems and Solutions]]
 +
* [[Mathematics competition resources|Mathematics Competition Resources]]

Revision as of 19:35, 21 November 2024

2016 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

The longest professional tennis match lasted a total of 11 hours and 5 minutes. How many minutes is that?

$\textbf{(A) } 605 \qquad\textbf{(B) } 655\qquad\textbf{(C) } 665\qquad\textbf{(D) } 1005\qquad \textbf{(E) } 1105$

Solution yip4eeee

Problem 2

In rectangle $ABCD$, $AB=6$ and $AD=8$. Point $M$ is the midpoint of $\overline{AD}$. What is the area of $\triangle AMC$?

[asy]draw((0,4)--(0,0)--(6,0)--(6,8)--(0,8)--(0,4)--(6,8)--(0,0)); label("$A$", (0,0), SW); label("$B$", (6, 0), SE); label("$C$", (6,8), NE); label("$D$", (0, 8), NW); label("$M$", (0, 4), W); label("$4$", (0, 2), W); label("$6$", (3, 0), S);[/asy]

$\textbf{(A) }12\qquad\textbf{(B) }15\qquad\textbf{(C) }18\qquad\textbf{(D) }20\qquad \textbf{(E) }24$

Solution

Problem 3

Four students take an exam. Three of their scores are $70, 80,$ and $90$. If the average of their four scores is $70$, then what is the remaining score?

$\textbf{(A) }40\qquad\textbf{(B) }50\qquad\textbf{(C) }55\qquad\textbf{(D) }60\qquad \textbf{(E) }70$

Solution

Problem 4

When Cheenu was a boy, he could run $15$ miles in $3$ hours and $30$ minutes. As an old man, he can now walk $10$ miles in $4$ hours. How many minutes longer does it take for him to travel a mile now compared to when he was a boy?

$\textbf{(A) }6\qquad\textbf{(B) }10\qquad\textbf{(C) }15\qquad\textbf{(D) }18\qquad \textbf{(E) }30$

Solution

Problem 5

The number $N$ is a two-digit number.

• When $N$ is divided by $9$, the remainder is $1$.

• When $N$ is divided by $10$, the remainder is $3$.

What is the remainder when $N$ is divided by $11$?


$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }7$

Solution

Problem 6

The following bar graph represents the length (in letters) of the names of 19 people. What is the median length of these names? [asy] unitsize(0.9cm); draw((-0.5,0)--(10,0), linewidth(1.5)); draw((-0.5,1)--(10,1)); draw((-0.5,2)--(10,2)); draw((-0.5,3)--(10,3)); draw((-0.5,4)--(10,4)); draw((-0.5,5)--(10,5)); draw((-0.5,6)--(10,6)); draw((-0.5,7)--(10,7)); label("frequency",(-0.5,8)); label("0", (-1, 0)); label("1", (-1, 1)); label("2", (-1, 2)); label("3", (-1, 3)); label("4", (-1, 4)); label("5", (-1, 5)); label("6", (-1, 6)); label("7", (-1, 7)); filldraw((0,0)--(0,7)--(1,7)--(1,0)--cycle, black); filldraw((2,0)--(2,3)--(3,3)--(3,0)--cycle, black); filldraw((4,0)--(4,1)--(5,1)--(5,0)--cycle, black); filldraw((6,0)--(6,4)--(7,4)--(7,0)--cycle, black); filldraw((8,0)--(8,4)--(9,4)--(9,0)--cycle, black); label("3", (0.5, -0.5)); label("4", (2.5, -0.5)); label("5", (4.5, -0.5)); label("6", (6.5, -0.5)); label("7", (8.5, -0.5)); label("name length", (4.5, -1)); [/asy]

$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad \textbf{(E) }7$

Solution

Problem 7

Which of the following numbers is not a perfect square?

$\textbf{(A) }1^{2016}\qquad\textbf{(B) }2^{2017}\qquad\textbf{(C) }3^{2018}\qquad\textbf{(D) }4^{2019}\qquad \textbf{(E) }5^{2020}$

Solution

Problem 8

Find the value of the expression: \[100-98+96-94+92-90+\cdots+8-6+4-2.\]$\textbf{(A) }20\qquad\textbf{(B) }40\qquad\textbf{(C) }50\qquad\textbf{(D) }80\qquad \textbf{(E) }100$

Solution

Problem 9

What is the sum of the distinct prime integer divisors of $2016$?

$\textbf{(A) }9\qquad\textbf{(B) }12\qquad\textbf{(C) }16\qquad\textbf{(D) }49\qquad \textbf{(E) }63$

Solution

Problem 10

Suppose that $a * b$ means $3a-b.$ What is the value of $x$ if \[2 * (5 * x)=1\] $\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14.$

Solution

Problem 11

Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is $132.$

$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12$

Solution

Problem 12

Jefferson Middle School has the same number of boys and girls. $\frac{3}{4}$ of the girls and $\frac{2}{3}$ of the boys went on a field trip. What fraction of the students on the field trip were girls?

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{9}{17}\qquad\textbf{(C) }\frac{7}{13}\qquad\textbf{(D) }\frac{2}{3}\qquad \textbf{(E) }\frac{14}{15}$

Solution

Problem 13

Two different numbers are randomly selected from the set $\{ - 2, -1, 0, 3, 4, 5\}$ and multiplied together. What is the probability that the product is $0$?

$\textbf{(A) }\dfrac{1}{6}\qquad\textbf{(B) }\dfrac{1}{5}\qquad\textbf{(C) }\dfrac{1}{4}\qquad\textbf{(D) }\dfrac{1}{3}\qquad \textbf{(E) }\dfrac{1}{2}$

Solution

Problem 14

Karl's car uses a gallon of gas every $35$ miles, and his gas tank holds $14$ gallons when it is full. One day, Karl started with a full tank of gas, drove $350$ miles, bought $8$ gallons of gas, and continued driving to his destination. When he arrived, his gas tank was half full. How many miles did Karl drive that day?

$\textbf{(A)}\mbox{ }525\qquad\textbf{(B)}\mbox{ }560\qquad\textbf{(C)}\mbox{ }595\qquad\textbf{(D)}\mbox{ }665\qquad\textbf{(E)}\mbox{ }735$

Solution

Problem 15

What is the largest power of $2$ that is a divisor of $13^4 - 11^4$?

$\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128$

Solution

Problem 16

Annie and Bonnie are running laps around a $400$-meter oval track. They started together, but Annie has pulled ahead because she runs $25\%$ faster than Bonnie. How many laps will Annie have run when she first passes Bonnie?

$\textbf{(A) }1\dfrac{1}{4}\qquad\textbf{(B) }3\dfrac{1}{3}\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad \textbf{(E) }25$

Solution

Problem 17

An ATM password at Fred's Bank is composed of four digits from $0$ to $9$, with repeated digits allowable. If no password may begin with the sequence $9,1,1,$ then how many passwords are possible?

$\textbf{(A)}\mbox{ }30\qquad\textbf{(B)}\mbox{ }7290\qquad\textbf{(C)}\mbox{ }9000\qquad\textbf{(D)}\mbox{ }9990\qquad\textbf{(E)}\mbox{ }9999$

Solution

Problem 18

In an All-Area track meet, $216$ sprinters enter a $100-$meter dash competition. The track has $6$ lanes, so only $6$ sprinters can compete at a time. At the end of each race, the five non-winners are eliminated, and the winner will compete again in a later race. How many races are needed to determine the champion sprinter?

$\textbf{(A)}\mbox{ }36\qquad\textbf{(B)}\mbox{ }42\qquad\textbf{(C)}\mbox{ }43\qquad\textbf{(D)}\mbox{ }60\qquad\textbf{(E)}\mbox{ }72$

Solution

Problem 19

The sum of $25$ consecutive even integers is $10,000$. What is the largest of these $25$ consecutive integers?

$\textbf{(A)}\mbox{ }360\qquad\textbf{(B)}\mbox{ }388\qquad\textbf{(C)}\mbox{ }412\qquad\textbf{(D)}\mbox{ }416\qquad\textbf{(E)}\mbox{ }424$

Solution

Problem 20

The least common multiple of $a$ and $b$ is $12$, and the least common multiple of $b$ and $c$ is $15$. What is the least possible value of the least common multiple of $a$ and $c$?

$\textbf{(A) }20\qquad\textbf{(B) }30\qquad\textbf{(C) }60\qquad\textbf{(D) }120\qquad \textbf{(E) }180$

Solution

Problem 21

A top hat contains 3 red chips and 2 green chips. Chips are drawn randomly, one at a time without replacement, until all 3 of the reds are drawn or until both green chips are drawn. What is the probability that the 3 reds are drawn?

$\textbf{(A) }\dfrac{3}{10}\qquad\textbf{(B) }\dfrac{2}{5}\qquad\textbf{(C) }\dfrac{1}{2}\qquad\textbf{(D) }\dfrac{3}{5}\qquad \textbf{(E) }\dfrac{7}{10}$

Solution

Problem 22

Rectangle $DEFA$ below is a $3 \times 4$ rectangle with $DC=CB=BA=1$. What is the area of the "bat wings" (shaded region)?[asy] draw((0,0)--(3,0)--(3,4)--(0,4)--(0,0)--(2,4)--(3,0)); draw((3,0)--(1,4)--(0,0)); fill((0,0)--(1,4)--(1.5,3)--cycle, black); fill((3,0)--(2,4)--(1.5,3)--cycle, black); label("$A$",(3.05,4.2)); label("$B$",(2,4.2)); label("$C$",(1,4.2)); label("$D$",(0,4.2)); label("$E$", (0,-0.2)); label("$F$", (3,-0.2)); [/asy]

$\textbf{(A) }2\qquad\textbf{(B) }2 \frac{1}{2}\qquad\textbf{(C) }3\qquad\textbf{(D) }3 \frac{1}{2}\qquad \textbf{(E) }4$

Solution

Problem 23

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

$\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$

Solution

Problem 24

The digits $1$, $2$, $3$, $4$, and $5$ are each used once to write a five-digit number $PQRST$. The three-digit number $PQR$ is divisible by $4$, the three-digit number $QRS$ is divisible by $5$, and the three-digit number $RST$ is divisible by $3$. What is $P$?

$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad \textbf{(E) }5$

Solution

Problem 25

A semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle as shown. What is the radius of the semicircle?

[asy]draw((0,0)--(8,15)--(16,0)--(0,0)); draw(arc((8,0),7.0588,0,180));[/asy]

$\textbf{(A) }4 \sqrt{3}\qquad\textbf{(B) } \dfrac{120}{17}\qquad\textbf{(C) }10\qquad\textbf{(D) }\dfrac{17\sqrt{2}}{2}\qquad \textbf{(E)} \dfrac{17\sqrt{3}}{2}$

Solution

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
2015 AMC 8
Followed by
2017 AMC 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions