Difference between revisions of "2024 AMC 10B Problems/Problem 24"
(certain china test papers) |
Dingletian (talk | contribs) (→Video Solution 1 by Pi Academy (In Less Than 2 Mins ⚡🚀)) |
||
(30 intermediate revisions by 12 users not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | <math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3 \qquad\textbf{(E) } 4</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution (The simplest way)== | ==Solution (The simplest way)== | ||
− | |||
− | |||
First, we know that <math>P(2022)</math> and <math>P(2024)</math> must be integers since they are both divisible by <math>2</math>. | First, we know that <math>P(2022)</math> and <math>P(2024)</math> must be integers since they are both divisible by <math>2</math>. | ||
Line 25: | Line 16: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Athmyx Athmyx] | ~[https://artofproblemsolving.com/wiki/index.php/User:Athmyx Athmyx] | ||
− | + | ==Solution 2 (Specific)== | |
+ | |||
+ | Take everything modulo 8 and re-write the entire fraction with denominator 8. This means that we're going to transform the fraction as follows : | ||
+ | <cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath> | ||
+ | becomes | ||
+ | <cmath>P(m)=\frac{4m + 2m^2 + m^4 + m^8}{8}</cmath> | ||
+ | And in order for <math>P(m)</math> to be an integer, it's important to note that <math>4m + 2m^2 + m^4 + m^8</math> must be congruent to 0 modulo 8. | ||
+ | Moreover, we know that <math>2022 \equiv 6 \pmod 8, 2023 \equiv 7 \pmod 8, 2024 \equiv 0 \pmod 8, 2025 \equiv 1 \pmod 8</math>. We can verify it by taking everything modulo 8 : | ||
+ | |||
+ | If <math>m = 2022</math>, then <math>4(6) + 2(4) + 0 + 0 = 24 + 8 = 32 \equiv 0 \pmod 8</math> -> TRUE | ||
+ | If <math>m = 2023</math>, then <math>4(7) + 2(1) + 1 + 1 = 28 + 2 + 1 + 1 = 32 \equiv 0 \pmod 8</math> -> TRUE | ||
+ | If <math>m = 2024</math>, then it is obvious that the entire expression is divisible by 8. Therefore, it is true. | ||
+ | If <math>m = 2025</math>, then <math>2025 \equiv 1 \pmod 8</math>. Therefore, <math>4(1) + 2(1) + 1 + 1 = 8 \equiv 0 \pmod 8</math> -> TRUE | ||
+ | Therefore, there are <math>\boxed{\textbf{(E) }4}</math> possible values. | ||
+ | |||
+ | Addendum for certain China test papers : | ||
+ | Note that <math>2026 \equiv 2 \pmod 8</math>. Therefore, taking everything modulo 8, whilst still maintaining the original expression, gives <math>4(2) + 2(4) + 0 + 0 = 16 \equiv 0 \pmod 8</math>. This is true. | ||
+ | |||
+ | Therefore, there are <math>\boxed{\textbf{(E) }5}</math> possible values. | ||
+ | ~elpianista227 | ||
+ | |||
+ | ==Solution 3 (Factoring)== | ||
+ | |||
+ | We can rewrite the expression as <cmath>\frac{1}{8}\cdot m \cdot (m^7+m^3+2m+4).</cmath> If <math>m</math> is even, then <math>m</math> gives a factor of <math>2</math> and <math>m^7+m^3+2m+4</math> will give a factor of <math>4,</math> so the result will be an integer. If <math>m</math> is odd, then notice that for any <math>m</math> we have <math>m^2\equiv 1 \pmod{8}.</math> Then <math>m^7+m^3+2m+4\equiv m+m+2m+4 \equiv 4(m+1) \equiv 0 \pmod{8}.</math> So any integer <math>m</math> will result in an integer, meaning the answer is <math>\boxed{\textbf{(E) }5}</math>. | ||
+ | |||
+ | -nevergonnagiveup | ||
+ | |||
+ | ~flyingkinder123 (minor edits) | ||
+ | |||
+ | == Solution 4 == | ||
+ | |||
+ | Taking a closer look at the terms, we notice that each term builds off of the previous one. There is <math>\frac{m}{2}</math>, <math>\frac{m^{2}}{4}</math>, which is equal to <math>\left(\frac{m}{2}\right)^{2}</math>, <math>\frac{m^{4}}{8}</math>, which is equal to <math>2\left(\frac{m^{2}}{4}\right)^{2}</math>, and <math>\frac{m^{8}}{8}</math>, which is equal to <math>8\left(\frac{m^{4}}{8}\right)^{2}</math>. Ultimately, this means that there are only two cases that we need to check for: the case in which <math>m</math> is even and the case in which <math>m</math> is odd. | ||
+ | |||
+ | If <math>m</math> is even, <math>\frac{m}{2}</math> will be an integer, which means the rest of the terms will be an integer. This means in the problem, <math>P(2022)</math> and <math>P(2024)</math> will yield an integer result. (For certain Chinese versions, this also proves that <math>P(2026)</math> is an integer.) | ||
+ | |||
+ | If <math>m</math> is odd, <math>\frac{m}{2}</math> will result in <math>\frac{1}{2}</math>. Building off of each term will give you <math>\frac{1}{4}</math>, <math>\frac{1}{8}</math>, and <math>\frac{1}{8}</math>, and summing those up will grant <math>1</math>, an integer. This means in the problem, <math>P(2023)</math> and <math>P(2025)</math> will also result in integer answers. | ||
+ | |||
+ | In general, all integer <math>m</math> will make <math>P(m)</math> give an integer answer, but for this question, this will get us to <math>\boxed{\textbf{(E) }4}</math> integer values (<math>\boxed{\textbf{(E) }5}</math> for certain Chinese versions of the test). | ||
+ | |||
+ | ~unpogged | ||
+ | |||
+ | ==Remark== | ||
+ | On certain versions of the AMC in China, the problem was restated as follows: | ||
+ | |||
+ | Let<cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath>How many of the values <math>P(2022)</math>, <math>P(2023)</math>, <math>P(2024)</math>, <math>P(2025),</math> and <math>P(2026)</math> are integers? | ||
+ | <math>\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 3 \qquad\textbf{(D) } 4 \qquad\textbf{(E) } 5</math> | ||
− | + | By identical reasoning, each term of <math>P</math> is an integer, since <math>2026</math> is even. | |
Therefore, the answer is <math>\boxed{\textbf{(E) }5}</math>. | Therefore, the answer is <math>\boxed{\textbf{(E) }5}</math>. | ||
− | ~[https://artofproblemsolving.com/wiki/index.php/User:iHateGeometry iHateGeometry] | + | ~[https://artofproblemsolving.com/wiki/index.php/User:iHateGeometry iHateGeometry], countmath1 |
+ | |||
+ | ==Video solution by chicken_rice (super clear and quick + subscribe plz) | ||
+ | |||
+ | https://www.youtube.com/watch?v=kQGbyhze_mY | ||
+ | |||
+ | ~chicken rice friend | ||
+ | |||
+ | ==Video Solution 2 by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=24EZaeAThuE | ||
+ | |||
+ | Video Solution 3 | ||
+ | by chicken_rice (SUPER CLEAR AND QUICK!!! SUBSCRIBE!!!) | ||
+ | https://www.youtube.com/watch?v=kQGbyhze_mY | ||
==See also== | ==See also== | ||
{{AMC10 box|year=2024|ab=B|num-b=23|num-a=25}} | {{AMC10 box|year=2024|ab=B|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 19:04, 20 November 2024
Contents
Problem
Let How many of the values , , , and are integers?
Solution (The simplest way)
First, we know that and must be integers since they are both divisible by .
Then Let’s consider the remaining two numbers. Since they are not divisible by , the result of the first term must be a certain number , and the result of the second term must be a certain number . Similarly, the remaining two terms must each be . Their sum is , so and are also integers.
Therefore, the answer is .
Solution 2 (Specific)
Take everything modulo 8 and re-write the entire fraction with denominator 8. This means that we're going to transform the fraction as follows : becomes And in order for to be an integer, it's important to note that must be congruent to 0 modulo 8. Moreover, we know that . We can verify it by taking everything modulo 8 :
If , then -> TRUE If , then -> TRUE If , then it is obvious that the entire expression is divisible by 8. Therefore, it is true. If , then . Therefore, -> TRUE Therefore, there are possible values.
Addendum for certain China test papers : Note that . Therefore, taking everything modulo 8, whilst still maintaining the original expression, gives . This is true.
Therefore, there are possible values. ~elpianista227
Solution 3 (Factoring)
We can rewrite the expression as If is even, then gives a factor of and will give a factor of so the result will be an integer. If is odd, then notice that for any we have Then So any integer will result in an integer, meaning the answer is .
-nevergonnagiveup
~flyingkinder123 (minor edits)
Solution 4
Taking a closer look at the terms, we notice that each term builds off of the previous one. There is , , which is equal to , , which is equal to , and , which is equal to . Ultimately, this means that there are only two cases that we need to check for: the case in which is even and the case in which is odd.
If is even, will be an integer, which means the rest of the terms will be an integer. This means in the problem, and will yield an integer result. (For certain Chinese versions, this also proves that is an integer.)
If is odd, will result in . Building off of each term will give you , , and , and summing those up will grant , an integer. This means in the problem, and will also result in integer answers.
In general, all integer will make give an integer answer, but for this question, this will get us to integer values ( for certain Chinese versions of the test).
~unpogged
Remark
On certain versions of the AMC in China, the problem was restated as follows:
LetHow many of the values , , , and are integers?
By identical reasoning, each term of is an integer, since is even.
Therefore, the answer is .
~iHateGeometry, countmath1
==Video solution by chicken_rice (super clear and quick + subscribe plz)
https://www.youtube.com/watch?v=kQGbyhze_mY
~chicken rice friend
Video Solution 2 by SpreadTheMathLove
https://www.youtube.com/watch?v=24EZaeAThuE
Video Solution 3 by chicken_rice (SUPER CLEAR AND QUICK!!! SUBSCRIBE!!!) https://www.youtube.com/watch?v=kQGbyhze_mY
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.