Difference between revisions of "Gergonne's Theorem"
(Created page with "Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respe...") |
|||
Line 1: | Line 1: | ||
+ | ==Theorem (Gergonne, 1818)== | ||
Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respectively such that lines <math>AM, BN,</math> and <math>CP</math> are concurrent at point <math>O.</math> Then, <math>\frac{OM}{AM} + \frac{ON}{BN} + \frac{OP}{CP} = 1</math>. | Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respectively such that lines <math>AM, BN,</math> and <math>CP</math> are concurrent at point <math>O.</math> Then, <math>\frac{OM}{AM} + \frac{ON}{BN} + \frac{OP}{CP} = 1</math>. | ||
+ | <asy> | ||
+ | size(200); | ||
+ | pair A,B,C,M,N,P,O; | ||
+ | A=(0,0); | ||
+ | B=(4,0); | ||
+ | C=(1,3); | ||
+ | M=(B+C)/2; | ||
+ | N=(A+C)/2; | ||
+ | P=(A+B)/2; | ||
+ | O=(1.5,1); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(A--M); | ||
+ | draw(B--N); | ||
+ | draw(C--P); | ||
+ | label("$A$",A,SW); | ||
+ | label("$B$",B,SE); | ||
+ | label("$C$",C,N); | ||
+ | label("$M$",M,E); | ||
+ | label("$N$",N,W); | ||
+ | label("$P$",P,S); | ||
+ | label("$O$",O,NE); | ||
+ | </asy> |
Latest revision as of 20:11, 9 November 2024
Theorem (Gergonne, 1818)
Let be a triangle and points , , and to be points on sides and respectively such that lines and are concurrent at point Then, .