Difference between revisions of "Gergonne's Theorem"

(Created page with "Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respe...")
 
 
Line 1: Line 1:
 +
==Theorem (Gergonne, 1818)==
 
Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respectively such that lines <math>AM, BN,</math> and <math>CP</math> are concurrent at point <math>O.</math> Then, <math>\frac{OM}{AM} + \frac{ON}{BN} + \frac{OP}{CP} = 1</math>.
 
Let <math>\triangle ABC</math> be a triangle and points <math>M</math>, <math>N</math>, and <math>P</math> to be points on sides <math>BC, AC,</math> and <math>AB</math> respectively such that lines <math>AM, BN,</math> and <math>CP</math> are concurrent at point <math>O.</math> Then, <math>\frac{OM}{AM} + \frac{ON}{BN} + \frac{OP}{CP} = 1</math>.
 +
<asy>
 +
size(200);
 +
pair A,B,C,M,N,P,O;
 +
A=(0,0);
 +
B=(4,0);
 +
C=(1,3);
 +
M=(B+C)/2;
 +
N=(A+C)/2;
 +
P=(A+B)/2;
 +
O=(1.5,1);
 +
draw(A--B--C--cycle);
 +
draw(A--M);
 +
draw(B--N);
 +
draw(C--P);
 +
label("$A$",A,SW);
 +
label("$B$",B,SE);
 +
label("$C$",C,N);
 +
label("$M$",M,E);
 +
label("$N$",N,W);
 +
label("$P$",P,S);
 +
label("$O$",O,NE);
 +
</asy>

Latest revision as of 20:11, 9 November 2024

Theorem (Gergonne, 1818)

Let $\triangle ABC$ be a triangle and points $M$, $N$, and $P$ to be points on sides $BC, AC,$ and $AB$ respectively such that lines $AM, BN,$ and $CP$ are concurrent at point $O.$ Then, $\frac{OM}{AM} + \frac{ON}{BN} + \frac{OP}{CP} = 1$. [asy] size(200); pair A,B,C,M,N,P,O; A=(0,0); B=(4,0); C=(1,3); M=(B+C)/2; N=(A+C)/2; P=(A+B)/2; O=(1.5,1); draw(A--B--C--cycle); draw(A--M); draw(B--N); draw(C--P); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,N); label("$M$",M,E); label("$N$",N,W); label("$P$",P,S); label("$O$",O,NE); [/asy]