TRAIN FOR THE AMC 10 WITH US
Thousands of top-scorers on the AMC 10 have used our Introduction series of textbooks and Art of Problem Solving Volume 1 for their training.
CHECK OUT THE BOOKS

Difference between revisions of "2020 AMC 10B Problems"

(Problem 13)
(Problem 3)
 
(70 intermediate revisions by 24 users not shown)
Line 3: Line 3:
 
==Problem 1==
 
==Problem 1==
  
What is the value of
+
What is the value of <cmath>1 - (-2) - 3 - (-4) - 5 - (-6)?</cmath>
<cmath>1-(-2)-3-(-4)-5-(-6)?</cmath>
 
  
<math>\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21</math>
+
<math>\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21</math>
  
 
[[2020 AMC 10B Problems/Problem 1|Solution]]
 
[[2020 AMC 10B Problems/Problem 1|Solution]]
Line 14: Line 13:
 
Carl has <math>5</math> cubes each having side length <math>1</math>, and Kate has <math>5</math> cubes each having side length <math>2</math>. What is the total volume of these <math>10</math> cubes?
 
Carl has <math>5</math> cubes each having side length <math>1</math>, and Kate has <math>5</math> cubes each having side length <math>2</math>. What is the total volume of these <math>10</math> cubes?
  
<math>\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 28 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 45</math>
+
<math>\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 28 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 45</math>
  
 
[[2020 AMC 10B Problems/Problem 2|Solution]]
 
[[2020 AMC 10B Problems/Problem 2|Solution]]
Line 36: Line 35:
 
==Problem 5==
 
==Problem 5==
  
How many distinguishable arrangements are there of 1 brown tile, 1 purple tile, 2 green tiles, and 3 yellow tiles in a row from left to right? (Tiles of the same color are indistinguishable.)
+
How many distinguishable arrangements are there of <math>1</math> brown tile, <math>1</math> purple tile, <math>2</math> green tiles, and <math>3</math> yellow tiles in a row from left to right? (Tiles of the same color are indistinguishable.)
  
 
<math>\textbf{(A)}\ 210 \qquad\textbf{(B)}\ 420 \qquad\textbf{(C)}\  630 \qquad\textbf{(D)}\ 840 \qquad\textbf{(E)}\ 1050</math>
 
<math>\textbf{(A)}\ 210 \qquad\textbf{(B)}\ 420 \qquad\textbf{(C)}\  630 \qquad\textbf{(D)}\ 840 \qquad\textbf{(E)}\ 1050</math>
Line 77: Line 76:
  
 
A three-quarter sector of a circle of radius <math>4</math> inches together with its interior can be rolled up to form the lateral surface area of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches?
 
A three-quarter sector of a circle of radius <math>4</math> inches together with its interior can be rolled up to form the lateral surface area of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches?
 +
 
<asy>
 
<asy>
 
 
draw(Arc((0,0), 4, 0, 270));
 
draw(Arc((0,0), 4, 0, 270));
 
draw((0,-4)--(0,0)--(4,0));
 
draw((0,-4)--(0,0)--(4,0));
 
 
label("$4$", (2,0), S);
 
label("$4$", (2,0), S);
 +
</asy>
  
</asy>
 
 
<math>\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7</math>
 
<math>\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7</math>
  
Line 90: Line 88:
  
 
==Problem 11==
 
==Problem 11==
Ms.Carr asks her students to read any 5 of the 10 books on a reading list. Harold randomly selects 5 books from this list, and Betty does the same. What is the probability that there are exactly 2 books that they both select?
 
  
<math>\textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{14}{45} \qquad\textbf{(D)}\ \frac{25}{63} \qquad\textbf{(E)}\ \frac{1}{2}</math>
+
Ms. Carr asks her students to read any <math>5</math> of the <math>10</math> books on a reading list. Harold randomly selects <math>5</math> books from this list, and Betty does the same. What is the probability that there are exactly <math>2</math> books that they both select?
 +
 
 +
<math>\textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{14}{45} \qquad\textbf{(D)}\ \frac{25}{63} \qquad\textbf{(E)}\ \frac{1}{2}</math>
  
 
[[2020 AMC 10B Problems/Problem 11|Solution]]
 
[[2020 AMC 10B Problems/Problem 11|Solution]]
Line 107: Line 106:
 
==Problem 13==
 
==Problem 13==
  
Andy the Ant lives on a coordinate plane and is currently at <math>(-20, 20)</math> facing east (that is, in the positive <math>x</math>-direction). Andy moves <math>1</math> unit and then turns <math>90^{\circ}</math> degrees left. From there, Andy moves <math>2</math> units (north) and then turns <math>90^{\circ}</math> degrees left. He then moves <math>3</math> units (west) and again turns <math>90^{\circ}</math> degrees left. Andy continues his progress, increasing his distance each time by <math>1</math> unit and always turning left. What is the location of the point at which Andy makes the <math>2020</math>th left turn?
+
Andy the Ant lives on a coordinate plane and is currently at <math>(-20, 20)</math> facing east (that is, in the positive <math>x</math>-direction). Andy moves <math>1</math> unit and then turns <math>90^{\circ}</math> left. From there, Andy moves <math>2</math> units (north) and then turns <math>90^{\circ}</math> left. He then moves <math>3</math> units (west) and again turns <math>90^{\circ}</math> left. Andy continues his progress, increasing his distance each time by <math>1</math> unit and always turning left. What is the location of the point which Andy makes the <math> 2020</math> left turn?
  
 
<math>\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)</math>
 
<math>\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)</math>
Line 118: Line 117:
  
 
<asy>
 
<asy>
real x=sqrt(3);
+
size(140);
real y=2sqrt(3);
+
fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4));
real z=3.5;
+
fill(arc((2,0),1,180,0)--(2,0)--cycle,white);
real a=x/2;
+
fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white);
real b=0.5;
+
fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white);
real c=3a;
+
fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white);
pair A, B, C, D, E, F;
+
fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white);
A = (1,0);
+
fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white);
B = (3,0);
+
draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0));
C = (4,x);
+
draw(arc((2,0),1,180,0)--(2,0)--cycle);
D = (3,y);
+
draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle);
E = (1,y);
+
draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle);
F = (0,x);
+
draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle);
 +
draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle);
 +
draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle);
 +
label("$2$",(3.5,3sqrt(3)/2),NE);
 +
</asy>
  
fill(A--B--C--D--E--F--A--cycle,grey);
 
fill(arc((2,0),1,0,180)--cycle,white);
 
fill(arc((2,y),1,180,360)--cycle,white);
 
fill(arc((z,a),1,60,240)--cycle,white);
 
fill(arc((b,a),1,300,480)--cycle,white);
 
fill(arc((b,c),1,240,420)--cycle,white);
 
fill(arc((z,c),1,120,300)--cycle,white);
 
draw(A--B--C--D--E--F--A);
 
draw(arc((z,c),1,120,300));
 
draw(arc((b,c),1,240,420));
 
draw(arc((b,a),1,300,480));
 
draw(arc((z,a),1,60,240));
 
draw(arc((2,y),1,180,360));
 
draw(arc((2,0),1,0,180));
 
label("2",(z,c),NE);
 
</asy>
 
 
<math> \textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi </math>
 
<math> \textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi </math>
  
Line 156: Line 143:
 
Steve wrote the digits <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, and <math>5</math> in order repeatedly from left to right, forming a list of <math>10,000</math> digits, beginning <math>123451234512\ldots.</math> He then erased every third digit from his list (that is, the <math>3</math>rd, <math>6</math>th, <math>9</math>th, <math>\ldots</math> digits from the left), then erased every fourth digit from the resulting list (that is, the <math>4</math>th, <math>8</math>th, <math>12</math>th, <math>\ldots</math> digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions <math>2019, 2020, 2021</math>?
 
Steve wrote the digits <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, and <math>5</math> in order repeatedly from left to right, forming a list of <math>10,000</math> digits, beginning <math>123451234512\ldots.</math> He then erased every third digit from his list (that is, the <math>3</math>rd, <math>6</math>th, <math>9</math>th, <math>\ldots</math> digits from the left), then erased every fourth digit from the resulting list (that is, the <math>4</math>th, <math>8</math>th, <math>12</math>th, <math>\ldots</math> digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions <math>2019, 2020, 2021</math>?
  
<math>\textbf{(A)} \text{ 7} \qquad \textbf{(B)} \text{ 9} \qquad \textbf{(C)} \text{ 10} \qquad \textbf{(D)} \text{ 11} \qquad \textbf{(E)} \text{ 12}</math>
+
<math>\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ 12</math>
  
 
[[2020 AMC 10B Problems/Problem 15|Solution]]
 
[[2020 AMC 10B Problems/Problem 15|Solution]]
Line 164: Line 151:
 
Bela and Jenn play the following game on the closed interval <math>[0, n]</math> of the real number line, where <math>n</math> is a fixed integer greater than <math>4</math>. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval <math>[0, n]</math>. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?
 
Bela and Jenn play the following game on the closed interval <math>[0, n]</math> of the real number line, where <math>n</math> is a fixed integer greater than <math>4</math>. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval <math>[0, n]</math>. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?
  
<math>\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{Bela will win if and only if }n \text{ is odd.}</math>
+
<math>\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{ Bela will win if and only if }n \text{ is odd.}</math>
<math>\textbf{(D)} \text{Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.</math>
+
<math>\textbf{(D)} \text{ Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.</math>
  
 
[[2020 AMC 10B Problems/Problem 16|Solution]]
 
[[2020 AMC 10B Problems/Problem 16|Solution]]
Line 171: Line 158:
 
==Problem 17==
 
==Problem 17==
  
There are <math>10</math> people standing equally spaced around a circle. Each person knows exactly <math>3</math> of the other <math>9</math> people: the <math>2</math> people standing next to her or him, as well as the person directly across the circle. How many ways are there for the <math>10</math> people to split up into <math>5</math> pairs so that the members of each pair know each other?
+
There are <math>10</math> people standing equally spaced around a circle. Each person knows exactly <math>3</math> of the other <math>9</math> people: the <math>2</math> people standing next to him or her, as well as the person directly across the circle. How many ways are there for the <math>10</math> people to split up into <math>5</math> pairs so that the members of each pair know each other?
  
 
<math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math>
 
<math>\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15</math>
Line 179: Line 166:
 
==Problem 18==
 
==Problem 18==
  
An urn contains one red ball and one blue ball. A box of extra red and blue balls lie nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?
+
An urn contains one red ball and one blue ball. A box of extra red and blue balls lies nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?
  
 
<math>\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12</math>
 
<math>\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12</math>
Line 195: Line 182:
 
==Problem 20==
 
==Problem 20==
  
Let <math>B</math> be a right rectangular prism (box) with edges lengths <math>1,</math> <math>3,</math> and <math>4</math>, together with its interior. For real <math>r\geq0</math>, let <math>S(r)</math> be the set of points in <math>3</math>-dimensional space that lie within a distance <math>r</math> of some point <math>B</math>. The volume of <math>S(r)</math> can be expressed as <math>ar^{3} + br^{2} + cr +d</math>, where <math>a,</math> <math>b,</math> <math>c,</math> and <math>d</math> are positive real numbers. What is <math>\frac{bc}{ad}?</math>
+
Let <math>B</math> be a right rectangular prism (box) with edges lengths <math>1,</math> <math>3,</math> and <math>4</math>, together with its interior. For real <math>r\geq0</math>, let <math>S(r)</math> be the set of points in <math>3</math>-dimensional space that lie within a distance <math>r</math> of some point in <math>B</math>. The volume of <math>S(r)</math> can be expressed as <math>ar^{3} + br^{2} + cr +d</math>, where <math>a,</math> <math>b,</math> <math>c,</math> and <math>d</math> are positive real numbers. What is <math>\frac{bc}{ad}?</math>
  
 
<math>\textbf{(A) } 6 \qquad\textbf{(B) } 19 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 38</math>
 
<math>\textbf{(A) } 6 \qquad\textbf{(B) } 19 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 38</math>
Line 253: Line 240:
  
 
Square <math>ABCD</math> in the coordinate plane has vertices at the points <math>A(1,1), B(-1,1), C(-1,-1),</math> and <math>D(1,-1).</math> Consider the following four transformations:
 
Square <math>ABCD</math> in the coordinate plane has vertices at the points <math>A(1,1), B(-1,1), C(-1,-1),</math> and <math>D(1,-1).</math> Consider the following four transformations:
<math>L,</math> a rotation of <math>90^{\circ}</math> counterclockwise around the origin;
+
 
<math>R,</math> a rotation of <math>90^{\circ}</math> clockwise around the origin;
+
<math>\quad\bullet\qquad</math> <math>L,</math> a rotation of <math>90^{\circ}</math> counterclockwise around the origin;
<math>H,</math> a reflection across the <math>x</math>-axis; and
+
 
<math>V,</math> a reflection across the <math>y</math>-axis.
+
<math>\quad\bullet\qquad</math> <math>R,</math> a rotation of <math>90^{\circ}</math> clockwise around the origin;
 +
 
 +
<math>\quad\bullet\qquad</math> <math>H,</math> a reflection across the <math>x</math>-axis; and
 +
 
 +
<math>\quad\bullet\qquad</math> <math>V,</math> a reflection across the <math>y</math>-axis.
  
 
Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying <math>R</math> and then <math>V</math> would send the vertex <math>A</math> at <math>(1,1)</math> to <math>(-1,-1)</math> and would send the vertex <math>B</math> at <math>(-1,1)</math> to itself. How many sequences of <math>20</math> transformations chosen from <math>\{L, R, H, V\}</math> will send all of the labeled vertices back to their original positions? (For example, <math>R, R, V, H</math> is one sequence of <math>4</math> transformations that will send the vertices back to their original positions.)
 
Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying <math>R</math> and then <math>V</math> would send the vertex <math>A</math> at <math>(1,1)</math> to <math>(-1,-1)</math> and would send the vertex <math>B</math> at <math>(-1,1)</math> to itself. How many sequences of <math>20</math> transformations chosen from <math>\{L, R, H, V\}</math> will send all of the labeled vertices back to their original positions? (For example, <math>R, R, V, H</math> is one sequence of <math>4</math> transformations that will send the vertices back to their original positions.)
Line 266: Line 257:
 
==Problem 24==
 
==Problem 24==
  
How many positive integers <math>n</math> satisfy<cmath>\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?</cmath>(Recall that <math>\lfloor x\rfloor</math> is the greatest integer not exceeding <math>x</math>.)
+
How many positive integers <math>n</math> satisfy<cmath>\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?
 +
 
 +
</cmath>(Recall that <math>\lfloor x\rfloor</math> is the greatest integer not exceeding <math>x</math>.)
  
 
<math>\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32</math>
 
<math>\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32</math>
Line 274: Line 267:
 
==Problem 25==
 
==Problem 25==
  
Let <math>D(n)</math> denote the number of ways of writing the positive integer <math>n</math> as a product<cmath>n = f_1\cdot f_2\cdots f_k,</cmath>where <math>k\ge1</math>, the <math>f_i</math> are integers strictly greater than <math>1</math>, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number <math>6</math> can be written as <math>6</math>, <math>2\cdot 3</math>, and <math>3\cdot2</math>, so <math>D(6) = 3</math>. What is <math>D(96)</math>?
+
Let <math>D(n)</math> denote the number of ways of writing the positive integer <math>n</math> as a product<cmath>n = f_1\cdot f_2\cdots f_k,</cmath>
 +
 
 +
where <math>k\ge1</math>, the <math>f_i</math> are integers strictly greater than <math>1</math>, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number <math>6</math> can be written as <math>6</math>, <math>2\cdot 3</math>, and <math>3\cdot2</math>, so <math>D(6) = 3</math>. What is <math>D(96)</math>?
  
 
<math>\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184</math>
 
<math>\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184</math>

Latest revision as of 19:07, 9 November 2024

2020 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of \[1 - (-2) - 3 - (-4) - 5 - (-6)?\]

$\textbf{(A)}\ -20 \qquad\textbf{(B)}\ -3 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 21$

Solution

Problem 2

Carl has $5$ cubes each having side length $1$, and Kate has $5$ cubes each having side length $2$. What is the total volume of these $10$ cubes?

$\textbf{(A)}\ 24 \qquad\textbf{(B)}\ 25 \qquad\textbf{(C)}\ 28 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 45$

Solution

Problem 3

The ratio of $w$ to $x$ is $4:3$, the ratio of $y$ to $z$ is $3:2$, and the ratio of $z$ to $x$ is $1:6$. What is the ratio of $w$ to $y?$

$\textbf{(A)}\ 4:3 \qquad\textbf{(B)}\ 3:2 \qquad\textbf{(C)}\  8:3 \qquad\textbf{(D)}\ 4:1 \qquad\textbf{(E)}\ 16:3$

Solution

Problem 4

The acute angles of a right triangle are $a^{\circ}$ and $b^{\circ}$, where $a>b$ and both $a$ and $b$ are prime numbers. What is the least possible value of $b$?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\  5 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 11$

Solution

Problem 5

How many distinguishable arrangements are there of $1$ brown tile, $1$ purple tile, $2$ green tiles, and $3$ yellow tiles in a row from left to right? (Tiles of the same color are indistinguishable.)

$\textbf{(A)}\ 210 \qquad\textbf{(B)}\ 420 \qquad\textbf{(C)}\  630 \qquad\textbf{(D)}\ 840 \qquad\textbf{(E)}\ 1050$

Solution

Problem 6

Driving along a highway, Megan noticed that her odometer showed $15951$ (miles). This number is a palindrome-it reads the same forward and backward. Then $2$ hours later, the odometer displayed the next higher palindrome. What was her average speed, in miles per hour, during this $2$-hour period?

$\textbf{(A)}\ 50 \qquad\textbf{(B)}\ 55 \qquad\textbf{(C)}\ 60 \qquad\textbf{(D)}\ 65 \qquad\textbf{(E)}\ 70$

Solution

Problem 7

How many positive even multiples of $3$ less than $2020$ are perfect squares?

$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\  9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 12$

Solution

Problem 8

Points $P$ and $Q$ lie in a plane with $PQ=8$. How many locations for point $R$ in this plane are there such that the triangle with vertices $P$, $Q$, and $R$ is a right triangle with area $12$ square units?

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\  6 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 12$

Solution

Problem 9

How many ordered pairs of integers $(x,y)$ satisfy the equation \[x^{2020} + y^2 = 2y?\]

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\  3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ \text{infinitely many}$

Solution

Problem 10

A three-quarter sector of a circle of radius $4$ inches together with its interior can be rolled up to form the lateral surface area of a right circular cone by taping together along the two radii shown. What is the volume of the cone in cubic inches?

[asy] draw(Arc((0,0), 4, 0, 270)); draw((0,-4)--(0,0)--(4,0)); label("$4$", (2,0), S); [/asy]

$\textbf{(A)}\ 3\pi \sqrt5 \qquad\textbf{(B)}\ 4\pi \sqrt3 \qquad\textbf{(C)}\ 3 \pi \sqrt7 \qquad\textbf{(D)}\ 6\pi \sqrt3 \qquad\textbf{(E)}\ 6\pi \sqrt7$

Solution

Problem 11

Ms. Carr asks her students to read any $5$ of the $10$ books on a reading list. Harold randomly selects $5$ books from this list, and Betty does the same. What is the probability that there are exactly $2$ books that they both select?

$\textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{5}{36} \qquad\textbf{(C)}\ \frac{14}{45} \qquad\textbf{(D)}\ \frac{25}{63} \qquad\textbf{(E)}\ \frac{1}{2}$

Solution

Problem 12

The decimal representation of \[\frac{1}{20^{20}}\] consists of a string of zeros after the decimal point, followed by a $9$ and then several more digits. How many zeros are in that initial string of zeros after the decimal point?

$\textbf{(A)}\ 23 \qquad\textbf{(B)}\ 24 \qquad\textbf{(C)}\  25 \qquad\textbf{(D)}\ 26 \qquad\textbf{(E)}\ 27$

Solution

Problem 13

Andy the Ant lives on a coordinate plane and is currently at $(-20, 20)$ facing east (that is, in the positive $x$-direction). Andy moves $1$ unit and then turns $90^{\circ}$ left. From there, Andy moves $2$ units (north) and then turns $90^{\circ}$ left. He then moves $3$ units (west) and again turns $90^{\circ}$ left. Andy continues his progress, increasing his distance each time by $1$ unit and always turning left. What is the location of the point which Andy makes the $2020$ left turn?

$\textbf{(A)}\ (-1030, -994)\qquad\textbf{(B)}\ (-1030, -990)\qquad\textbf{(C)}\ (-1026, -994)\qquad\textbf{(D)}\ (-1026, -990)\qquad\textbf{(E)}\ (-1022, -994)$

Solution

Problem 14

As shown in the figure below, six semicircles lie in the interior of a regular hexagon with side length 2 so that the diameters of the semicircles coincide with the sides of the hexagon. What is the area of the shaded region — inside the hexagon but outside all of the semicircles?

[asy] size(140); fill((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--cycle,gray(0.4)); fill(arc((2,0),1,180,0)--(2,0)--cycle,white); fill(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle,white); fill(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle,white); fill(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle,white); fill(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle,white); fill(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle,white); draw((1,0)--(3,0)--(4,sqrt(3))--(3,2sqrt(3))--(1,2sqrt(3))--(0,sqrt(3))--(1,0)); draw(arc((2,0),1,180,0)--(2,0)--cycle); draw(arc((3.5,sqrt(3)/2),1,60,240)--(3.5,sqrt(3)/2)--cycle); draw(arc((3.5,3sqrt(3)/2),1,120,300)--(3.5,3sqrt(3)/2)--cycle); draw(arc((2,2sqrt(3)),1,180,360)--(2,2sqrt(3))--cycle); draw(arc((0.5,3sqrt(3)/2),1,240,420)--(0.5,3sqrt(3)/2)--cycle); draw(arc((0.5,sqrt(3)/2),1,300,480)--(0.5,sqrt(3)/2)--cycle); label("$2$",(3.5,3sqrt(3)/2),NE); [/asy]

$\textbf {(A) } 6\sqrt{3}-3\pi \qquad \textbf {(B) } \frac{9\sqrt{3}}{2} - 2\pi\ \qquad \textbf {(C) } \frac{3\sqrt{3}}{2} - \frac{\pi}{3} \qquad \textbf {(D) } 3\sqrt{3} - \pi \qquad \textbf {(E) } \frac{9\sqrt{3}}{2} - \pi$

Solution

Problem 15

Steve wrote the digits $1$, $2$, $3$, $4$, and $5$ in order repeatedly from left to right, forming a list of $10,000$ digits, beginning $123451234512\ldots.$ He then erased every third digit from his list (that is, the $3$rd, $6$th, $9$th, $\ldots$ digits from the left), then erased every fourth digit from the resulting list (that is, the $4$th, $8$th, $12$th, $\ldots$ digits from the left in what remained), and then erased every fifth digit from what remained at that point. What is the sum of the three digits that were then in the positions $2019, 2020, 2021$?

$\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ 12$

Solution

Problem 16

Bela and Jenn play the following game on the closed interval $[0, n]$ of the real number line, where $n$ is a fixed integer greater than $4$. They take turns playing, with Bela going first. At his first turn, Bela chooses any real number in the interval $[0, n]$. Thereafter, the player whose turn it is chooses a real number that is more than one unit away from all numbers previously chosen by either player. A player unable to choose such a number loses. Using optimal strategy, which player will win the game?

$\textbf{(A)} \text{ Bela will always win.} \qquad \textbf{(B)} \text{ Jenn will always win.} \qquad \textbf{(C)} \text{ Bela will win if and only if }n \text{ is odd.}$ $\textbf{(D)} \text{ Jenn will win if and only if }n \text{ is odd.} \qquad \textbf{(E)} \text { Jenn will win if and only if } n>8.$

Solution

Problem 17

There are $10$ people standing equally spaced around a circle. Each person knows exactly $3$ of the other $9$ people: the $2$ people standing next to him or her, as well as the person directly across the circle. How many ways are there for the $10$ people to split up into $5$ pairs so that the members of each pair know each other?

$\textbf{(A)}\ 11 \qquad\textbf{(B)}\ 12 \qquad\textbf{(C)}\  13 \qquad\textbf{(D)}\ 14 \qquad\textbf{(E)}\ 15$

Solution

Problem 18

An urn contains one red ball and one blue ball. A box of extra red and blue balls lies nearby. George performs the following operation four times: he draws a ball from the urn at random and then takes a ball of the same color from the box and returns those two matching balls to the urn. After the four iterations the urn contains six balls. What is the probability that the urn contains three balls of each color?

$\textbf{(A) } \frac16 \qquad \textbf{(B) }\frac15 \qquad \textbf{(C) } \frac14 \qquad \textbf{(D) } \frac13 \qquad \textbf{(E) } \frac12$

Solution

Problem 19

In a certain card game, a player is dealt a hand of $10$ cards from a deck of $52$ distinct cards. The number of distinct (unordered) hands that can be dealt to the player can be written as $158A00A4AA0$. What is the digit $A$?

$\textbf{(A) } 2 \qquad\textbf{(B) } 3 \qquad\textbf{(C) } 4 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7$

Solution

Problem 20

Let $B$ be a right rectangular prism (box) with edges lengths $1,$ $3,$ and $4$, together with its interior. For real $r\geq0$, let $S(r)$ be the set of points in $3$-dimensional space that lie within a distance $r$ of some point in $B$. The volume of $S(r)$ can be expressed as $ar^{3} + br^{2} + cr +d$, where $a,$ $b,$ $c,$ and $d$ are positive real numbers. What is $\frac{bc}{ad}?$

$\textbf{(A) } 6 \qquad\textbf{(B) } 19 \qquad\textbf{(C) } 24 \qquad\textbf{(D) } 26 \qquad\textbf{(E) } 38$

Solution

Problem 21

In square $ABCD$, points $E$ and $H$ lie on $\overline{AB}$ and $\overline{DA}$, respectively, so that $AE=AH.$ Points $F$ and $G$ lie on $\overline{BC}$ and $\overline{CD}$, respectively, and points $I$ and $J$ lie on $\overline{EH}$ so that $\overline{FI} \perp \overline{EH}$ and $\overline{GJ} \perp \overline{EH}$. See the figure below. Triangle $AEH$, quadrilateral $BFIE$, quadrilateral $DHJG$, and pentagon $FCGJI$ each has area $1.$ What is $FI^2$? [asy] real x=2sqrt(2); real y=2sqrt(16-8sqrt(2))-4+2sqrt(2); real z=2sqrt(8-4sqrt(2)); pair A, B, C, D, E, F, G, H, I, J; A = (0,0); B = (4,0); C = (4,4); D = (0,4); E = (x,0); F = (4,y); G = (y,4); H = (0,x); I = F + z * dir(225); J = G + z * dir(225);  draw(A--B--C--D--A); draw(H--E); draw(J--G^^F--I); draw(rightanglemark(G, J, I), linewidth(.5)); draw(rightanglemark(F, I, E), linewidth(.5));  dot("$A$", A, S); dot("$B$", B, S); dot("$C$", C, dir(90)); dot("$D$", D, dir(90)); dot("$E$", E, S); dot("$F$", F, dir(0)); dot("$G$", G, N); dot("$H$", H, W); dot("$I$", I, SW); dot("$J$", J, SW);  [/asy] $\textbf{(A) } \frac{7}{3} \qquad \textbf{(B) } 8-4\sqrt2 \qquad \textbf{(C) } 1+\sqrt2 \qquad \textbf{(D) } \frac{7}{4}\sqrt2 \qquad \textbf{(E) } 2\sqrt2$

Solution

Problem 22

What is the remainder when $2^{202} +202$ is divided by $2^{101}+2^{51}+1$?

$\textbf{(A) } 100 \qquad\textbf{(B) } 101 \qquad\textbf{(C) } 200 \qquad\textbf{(D) } 201 \qquad\textbf{(E) } 202$

Solution

Problem 23

Square $ABCD$ in the coordinate plane has vertices at the points $A(1,1), B(-1,1), C(-1,-1),$ and $D(1,-1).$ Consider the following four transformations:

$\quad\bullet\qquad$ $L,$ a rotation of $90^{\circ}$ counterclockwise around the origin;

$\quad\bullet\qquad$ $R,$ a rotation of $90^{\circ}$ clockwise around the origin;

$\quad\bullet\qquad$ $H,$ a reflection across the $x$-axis; and

$\quad\bullet\qquad$ $V,$ a reflection across the $y$-axis.

Each of these transformations maps the squares onto itself, but the positions of the labeled vertices will change. For example, applying $R$ and then $V$ would send the vertex $A$ at $(1,1)$ to $(-1,-1)$ and would send the vertex $B$ at $(-1,1)$ to itself. How many sequences of $20$ transformations chosen from $\{L, R, H, V\}$ will send all of the labeled vertices back to their original positions? (For example, $R, R, V, H$ is one sequence of $4$ transformations that will send the vertices back to their original positions.)

$\textbf{(A)}\ 2^{37} \qquad\textbf{(B)}\ 3\cdot 2^{36} \qquad\textbf{(C)}\  2^{38} \qquad\textbf{(D)}\ 3\cdot 2^{37} \qquad\textbf{(E)}\ 2^{39}$

Solution

Problem 24

How many positive integers $n$ satisfy\[\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?\](Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)

$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$

Solution

Problem 25

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product\[n = f_1\cdot f_2\cdots f_k,\]

where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$?

$\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

Solution

See also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2020 AMC 10A Problems
Followed by
2021 AMC 10A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png