Difference between revisions of "2024 AMC 12A Problems/Problem 25"
Babyhamster (talk | contribs) (→Solution 1) |
Babyhamster (talk | contribs) (→Solution 2 (Rotation + Edge Cases)) |
||
Line 66: | Line 66: | ||
==Solution 2 (Rotation + Edge Cases)== | ==Solution 2 (Rotation + Edge Cases)== | ||
− | + | First, observe that the only linear functions that are symmetric about <math>y = x</math> are <math>y = x</math> and <math>y = -x</math>. | |
+ | |||
+ | |||
We perform a <math>45^\circ</math> counterclockwise rotation of the Cartesian plane. Let <math>(x, y)</math> be sent to <math>(u, v)</math>. Then <math>u</math> and <math>v</math> are the real and imaginary parts of <math>(x + yi)(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)</math> respectively, which gives | We perform a <math>45^\circ</math> counterclockwise rotation of the Cartesian plane. Let <math>(x, y)</math> be sent to <math>(u, v)</math>. Then <math>u</math> and <math>v</math> are the real and imaginary parts of <math>(x + yi)(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i)</math> respectively, which gives |
Revision as of 19:06, 9 November 2024
Problem
A graph is about a line if the graph remains unchanged after reflection in that line. For how many quadruples of integers , where and and are not both , is the graph of symmetric about the line ?
Solution 1
Symmetric about the line implies that the inverse fuction . Then we split the question into several cases to find the final answer.
Case 1:
Then and . Giving us and
Therefore, we obtain 2 subcases: and
Case 2:
Then
And
So , or (), and substitude that into gives us:
(Otherwise , , and is not symmetric about )
Therefore we get three cases:
Case 1.1:
We have 10 choice of , 10 choice of and each choice of has one corresponding choice of . In total ways.
Case 1.2:
We have 10 choice for (), each choice of has 2 corresponding choice of , thus ways.
Case 2:
: ways.
: ways.
: ways.
: ways.
: ways.
: ways.
In total ways.
So the answer is
~ERiccc
Solution 2 (Rotation + Edge Cases)
First, observe that the only linear functions that are symmetric about are and .
We perform a counterclockwise rotation of the Cartesian plane. Let be sent to . Then and are the real and imaginary parts of respectively, which gives
so
.
The rotated function is symmetric about the y-axis, so the equation holds after replacing all instances of with (this is just switching the values of and which is a reflection over , but working in terms of allows more cancellations in the following calculations).
Writing and in terms of and , we have
Multiplying both equations by and subtracting the second equation from the first equation gives . Since are integers between and , this gives combinations. We need to subtract the edge cases that don't work, namely all linear functions except and . Consider the following cases:
Case 1: are all nonzero. Then the function is linear when is a multiple of , or .
If , or ; there are ways.
If , there are ways.
If , there are ways.
If , there are ways.
If , there are ways.
In total, this case has combinations.
Case 2: or
If then can take on values, and if , then can take on values, but is counted twice so this case has combinations.
Finally, we need to add the case where , which occurs when and . can be any integer from to except , so this case has combinations. Since occurs when and , this case is already counted.
The answer is .
~babyhamster
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.