Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 3"

 
Line 1: Line 1:
 
+
==Problem==
<math>3.</math> A function <math>f(x)</math> is defined for all real numbers <math>x</math>. For all non-zero values <math>x</math>, we have
+
A function <math>f(x)</math> is defined for all real numbers <math>x</math>. For all non-zero values <math>x</math>, we have
  
 
<math>2f\left(x\right) + f\left(\frac{1}{x}\right) = 5x + 4</math>
 
<math>2f\left(x\right) + f\left(\frac{1}{x}\right) = 5x + 4</math>
  
 
Let <math>S</math> denote the sum of all of the values of <math>x</math> for which <math>f(x) = 2004</math>. Compute the integer nearest to <math>S</math>.
 
Let <math>S</math> denote the sum of all of the values of <math>x</math> for which <math>f(x) = 2004</math>. Compute the integer nearest to <math>S</math>.
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See also==

Revision as of 07:35, 14 February 2008

Problem

A function $f(x)$ is defined for all real numbers $x$. For all non-zero values $x$, we have

$2f\left(x\right) + f\left(\frac{1}{x}\right) = 5x + 4$

Let $S$ denote the sum of all of the values of $x$ for which $f(x) = 2004$. Compute the integer nearest to $S$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also