Difference between revisions of "2024 AMC 12A Problems/Problem 8"
(→Solution) |
Evanhliu2009 (talk | contribs) (→Solution 1.1 (less words)) |
||
Line 16: | Line 16: | ||
~Technodoggo | ~Technodoggo | ||
==Solution 1.1 (less words)== | ==Solution 1.1 (less words)== | ||
− | <cmath>log(sin(3\theta))+log(cos(2\theta))=0</cmath> | + | <cmath>\log(\sin(3\theta))+\log(\cos(2\theta))=0</cmath> |
− | <cmath>log(sin(3\theta)cos(2\theta))=0</cmath> | + | <cmath>\log(\sin(3\theta)\cos(2\theta))=0</cmath> |
− | <cmath>sin(3\theta)cos(2\theta)=1</cmath> | + | <cmath>\sin(3\theta)\cos(2\theta)=1</cmath> |
− | <cmath>\text{Since } -1\le sin(x),cos(x)\le 1 \Rightarrow sin(3\theta)=cos(2\theta)= \pm1</cmath> | + | <cmath>\text{Since } -1\le \sin(x),\cos(x)\le 1 \Rightarrow \sin(3\theta)=\cos(2\theta)= \pm1</cmath> |
− | BUT note that <math>log(-1)</math> is not real | + | BUT note that <math>\log(-1)</math> is not real |
− | <cmath>\Rightarrow sin(3\theta)=cos(2\theta)= 1</cmath> | + | <cmath>\Rightarrow \sin(3\theta)=\cos(2\theta)= 1</cmath> |
<cmath>3\theta=\frac{\pi}{2}+2\pi n; \space 2\theta=2\pi m \space (m,n \in \mathbb{Z})</cmath> | <cmath>3\theta=\frac{\pi}{2}+2\pi n; \space 2\theta=2\pi m \space (m,n \in \mathbb{Z})</cmath> | ||
<cmath>\theta=\frac{\pi}{6}+\frac{2\pi n}{3}; \space \theta=\pi m</cmath> | <cmath>\theta=\frac{\pi}{6}+\frac{2\pi n}{3}; \space \theta=\pi m</cmath> | ||
<cmath>\Rightarrow \theta\text { has no solution}</cmath> | <cmath>\Rightarrow \theta\text { has no solution}</cmath> | ||
− | Giving us <math> \fbox{(A) 0}</math> | + | Giving us <math> \fbox{(A) 0}</math>. |
+ | |||
+ | ~Minor edits by evanhliu2009 | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=7|num-a=9}} | {{AMC12 box|year=2024|ab=A|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:44, 8 November 2024
Problem
How many angles with satisfy ?
Solution 1
Note that this is equivalent to , which is clearly only possible when . (If either one is between and , the other one must be greater than or less than to offset the product, which is impossible for sine and cosine.) They cannot be both since we cannot take logarithms of negative numbers, so they are both . Then is more than a multiple of and is a multiple of , so is more than a multiple of and also a multiple of . However, a multiple of will always have a denominator of or , and never ; it can thus never add with to form an integral multiple of . Thus, there are solutions.
~Technodoggo
Solution 1.1 (less words)
BUT note that is not real Giving us .
~Minor edits by evanhliu2009
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.