Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Solution 1 (Trigonometric Identities)) |
(→Solution 1 (Trigonometric Identities)) |
||
Line 7: | Line 7: | ||
First, notice that | First, notice that | ||
+ | \[ | ||
+ | \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} | ||
+ | \] | ||
+ | can be rewritten as | ||
+ | \[ | ||
+ | = \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) | ||
+ | \] | ||
− | + | Here, we use the identity | |
− | + | \[ | |
− | + | \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) = \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 | |
− | + | \] | |
− | + | to rewrite this as | |
− | + | \[ | |
− | Here, we | + | = \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 |
− | + | \] | |
− | + | \[ | |
− | + | = \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 | |
− | + | \] | |
− | + | \[ | |
− | + | = \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 | |
− | + | \] | |
− | + | \[ | |
− | + | = \left( \frac{1}{\cos x \sin x} \right)^2 - 2 | |
− | + | \] | |
− | + | \[ | |
− | + | = \left( \frac{2}{\sin 2x} \right)^2 - 2 | |
− | + | \] | |
− | + | \[ | |
− | + | = \frac{4}{\sin^2 2x} - 2 | |
− | + | \] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Hence, | Hence, | ||
+ | \[ | ||
+ | \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) = \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) | ||
+ | \] | ||
− | + | Note that | |
− | + | \[ | |
− | + | \sin^2 \frac{\pi}{8} = \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} | |
− | + | \] | |
− | + | and | |
+ | \[ | ||
+ | \sin^2 \frac{3\pi}{8} = \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} | ||
+ | \] | ||
− | + | Thus, | |
+ | \[ | ||
+ | \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) = \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) | ||
+ | \] | ||
− | + | Simplifying, | |
+ | \[ | ||
+ | = (14 + 8\sqrt{2})(14 - 8\sqrt{2}) = 68 | ||
+ | \] | ||
− | + | Therefore, the answer is \(\boxed{\textbf{(B) } 68}\). | |
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:56, 8 November 2024
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that \[ \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{3\pi}{16} + \tan^2 \frac{\pi}{16} \cdot \tan^2 \frac{5\pi}{16} + \tan^2 \frac{3\pi}{16} \cdot \tan^2 \frac{7\pi}{16} + \tan^2 \frac{5\pi}{16} \cdot \tan^2 \frac{7\pi}{16} \] can be rewritten as \[ = \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) \]
Here, we use the identity \[ \tan^2 x + \tan^2 \left( \frac{\pi}{2} - x \right) = \left( \tan x + \tan \left( \frac{\pi}{2} - x \right) \right)^2 - 2 \] to rewrite this as \[ = \left( \frac{\sin x}{\cos x} + \frac{\sin \left( \frac{\pi}{2} - x \right)}{\cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \] \[ = \left( \frac{\sin x \cos \left( \frac{\pi}{2} - x \right) + \sin \left( \frac{\pi}{2} - x \right) \cos x}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \] \[ = \left( \frac{\sin \frac{\pi}{2}}{\cos x \cos \left( \frac{\pi}{2} - x \right)} \right)^2 - 2 \] \[ = \left( \frac{1}{\cos x \sin x} \right)^2 - 2 \] \[ = \left( \frac{2}{\sin 2x} \right)^2 - 2 \] \[ = \frac{4}{\sin^2 2x} - 2 \]
Hence, \[ \left( \tan^2 \frac{\pi}{16} + \tan^2 \frac{7\pi}{16} \right) \cdot \left( \tan^2 \frac{3\pi}{16} + \tan^2 \frac{5\pi}{16} \right) = \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) \]
Note that \[ \sin^2 \frac{\pi}{8} = \frac{1 - \cos \frac{\pi}{4}}{2} = \frac{2 - \sqrt{2}}{4} \] and \[ \sin^2 \frac{3\pi}{8} = \frac{1 - \cos \frac{3\pi}{4}}{2} = \frac{2 + \sqrt{2}}{4} \]
Thus, \[ \left( \frac{4}{\sin^2 \frac{\pi}{8}} - 2 \right) \left( \frac{4}{\sin^2 \frac{3\pi}{8}} - 2 \right) = \left( \frac{16}{2 - \sqrt{2}} - 2 \right) \left( \frac{16}{2 + \sqrt{2}} - 2 \right) \]
Simplifying, \[ = (14 + 8\sqrt{2})(14 - 8\sqrt{2}) = 68 \]
Therefore, the answer is \(\boxed{\textbf{(B) } 68}\).
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.