Difference between revisions of "2024 AMC 10A Problems/Problem 23"
(→Solution 2) |
(→Solution 2) |
||
Line 34: | Line 34: | ||
Which implies that <math>a+c=-17</math> | Which implies that <math>a+c=-17</math> | ||
Therefore, <math>ab+ba+ac=100+87+60-(a+b+c)</math> | Therefore, <math>ab+ba+ac=100+87+60-(a+b+c)</math> | ||
− | <cmath>=\boxed{\text{( | + | <cmath>=\boxed{\text{(D) }276}</cmath> |
~lptoggled | ~lptoggled | ||
Revision as of 18:34, 8 November 2024
- The following problem is from both the 2024 AMC 10A #23 and 2024 AMC 12A #17, so both problems redirect to this page.
Contents
Problem
Integers , , and satisfy , , and . What is ?
Solution
Subtracting the first two equations yields . Notice that both factors are integers, so could equal one of and . We consider each case separately:
For , from the second equation, we see that . Then , which is not possible as is an integer, so this case is invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
For , we have and , which by experimentation on the factors of has no solution, so this is also invalid.
Thus, we must have , so and . Thus , so . We can simply trial and error this to find that so then . The answer is then .
~eevee9406
Solution 2
Which implies that Therefore, ~lptoggled
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.