Difference between revisions of "2024 AMC 12A Problems/Problem 18"

(Created page with "==Solution 1== Let the midpoint of <math>AC</math> be <math>P</math> We see that no matter how many moves we do, <math>P</math> stays where it is Now we can find the angle of...")
 
(Solution 1)
Line 2: Line 2:
 
Let the midpoint of <math>AC</math> be <math>P</math>
 
Let the midpoint of <math>AC</math> be <math>P</math>
 
We see that no matter how many moves we do, <math>P</math> stays where it is
 
We see that no matter how many moves we do, <math>P</math> stays where it is
 +
<cmath></cmath>
 
Now we can find the angle of rotation (<math>\angle APB</math>) per move with the following steps:
 
Now we can find the angle of rotation (<math>\angle APB</math>) per move with the following steps:
 
<cmath>AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}</cmath>
 
<cmath>AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}</cmath>
Line 8: Line 9:
 
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}</cmath>
 
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}</cmath>
 
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}</cmath>
 
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}</cmath>
<math>cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}</math>
+
<cmath>cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}</cmath>
<math>\angle APB=30^\circ</math>
+
<cmath>\angle APB=30^\circ</cmath>
Since Vertex <math>C</math> is the closest one and <math>\angle BPC=360-180-30=150</math>
+
Since Vertex <math>C</math> is the closest one and <cmath>\angle BPC=360-180-30=150</cmath>
 +
 
 
Vertex C will land on Vertex B when <math>\frac{150}{30}+1=\fbox{(A) 6}</math> cards are placed
 
Vertex C will land on Vertex B when <math>\frac{150}{30}+1=\fbox{(A) 6}</math> cards are placed

Revision as of 17:57, 8 November 2024

Solution 1

Let the midpoint of $AC$ be $P$ We see that no matter how many moves we do, $P$ stays where it is \[\] Now we can find the angle of rotation ($\angle APB$) per move with the following steps: \[AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}\] \[1^2=AP^2+AP^2-2(AP)(AP)cos\angle APB\] \[1=2(2+\sqrt{3})(1-cos\angle APB)\] \[cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\] \[cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}\] \[cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}\] \[\angle APB=30^\circ\] Since Vertex $C$ is the closest one and \[\angle BPC=360-180-30=150\]

Vertex C will land on Vertex B when $\frac{150}{30}+1=\fbox{(A) 6}$ cards are placed