Difference between revisions of "2017 USAMO Problems/Problem 4"

(Created page with "==Problem== Let <math>P_1</math>, <math>P_2</math>, <math>\dots</math>, <math>P_{2n}</math> be <math>2n</math> distinct points on the unit circle <math>x^2+y^2=1</math>, other...")
 
(redirect to USAJMO version)
(Tag: New redirect)
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT[[2017_USAJMO_Problems/Problem_6]]
Let <math>P_1</math>, <math>P_2</math>, <math>\dots</math>, <math>P_{2n}</math> be <math>2n</math> distinct points on the unit circle <math>x^2+y^2=1</math>, other than <math>(1,0)</math>. Each point is colored either red or blue, with exactly <math>n</math> red points and <math>n</math> blue points. Let <math>R_1</math>, <math>R_2</math>, <math>\dots</math>, <math>R_n</math> be any ordering of the red points. Let <math>B_1</math> be the nearest blue point to <math>R_1</math> traveling counterclockwise around the circle starting from <math>R_1</math>. Then let <math>B_2</math> be the nearest of the remaining blue points to <math>R_2</math> travelling counterclockwise around the circle from <math>R_2</math>, and so on, until we have labeled all of the blue points <math>B_1, \dots, B_n</math>. Show that the number of counterclockwise arcs of the form <math>R_i \to B_i</math> that contain the point <math>(1,0)</math> is independent of the way we chose the ordering <math>R_1, \dots, R_n</math> of the red points.
 

Latest revision as of 11:21, 24 October 2024