Difference between revisions of "Miquel's point"
(Created page with "==Miquel and Steiner's quadrilateral theorem== 500px|right Let four lines made four triangles of a complete quadrilateral. In the diagram these are <math>\t...") |
(→Analogue of Miquel's point) |
||
(10 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Miquel and Steiner's quadrilateral theorem== | ==Miquel and Steiner's quadrilateral theorem== | ||
− | [[Miquel circles|500px|right]] | + | [[File:4 Miquel circles.png|500px|right]] |
Let four lines made four triangles of a complete quadrilateral. In the diagram these are <math>\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.</math> | Let four lines made four triangles of a complete quadrilateral. In the diagram these are <math>\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.</math> | ||
Line 7: | Line 7: | ||
<i><b>Proof</b></i> | <i><b>Proof</b></i> | ||
− | Let circumcircle of <math>\triangle ABC</math> circle <math>\Omega</math> cross the circumcircle of <math>\triangle CEF \omega</math> at point <math>M.</math> | + | Let circumcircle of <math>\triangle ABC</math> circle <math>\Omega</math> cross the circumcircle of <math>\triangle CEF</math> circle <math>\omega</math> at point <math>M.</math> |
Let <math>AM</math> cross <math>\omega</math> second time in the point <math>G.</math> | Let <math>AM</math> cross <math>\omega</math> second time in the point <math>G.</math> | ||
Line 13: | Line 13: | ||
<math>CMGF</math> is cyclic <math>\implies \angle BCM = \angle MGF.</math> | <math>CMGF</math> is cyclic <math>\implies \angle BCM = \angle MGF.</math> | ||
− | <math>AMCB</math> is cyclic <math>\implies \angle BCM + \angle BAM = 180^\circ \implies \angle BAG + \angle AGF = 180^\circ \implies AB||GF.</math> | + | <math>AMCB</math> is cyclic <math>\implies \angle BCM + \angle BAM = 180^\circ \implies</math> |
+ | |||
+ | <math>\angle BAG + \angle AGF = 180^\circ \implies AB||GF.</math> | ||
<math>CMGF</math> is cyclic <math>\implies \angle AME = \angle EFG.</math> | <math>CMGF</math> is cyclic <math>\implies \angle AME = \angle EFG.</math> | ||
− | <math>AD||GF \implies \angle ADE + \angle DFG = 180^\circ \implies \angle ADE + \angle AME = 180^\circ \implies ADEM</math> is cyclic and circumcircle of <math>\triangle ADE</math> contain the point <math>M.</math> | + | <math>AD||GF \implies \angle ADE + \angle DFG = 180^\circ \implies \angle ADE + \angle AME = 180^\circ \implies</math> |
+ | |||
+ | <math>ADEM</math> is cyclic and circumcircle of <math>\triangle ADE</math> contain the point <math>M.</math> | ||
Similarly circumcircle of <math>\triangle BDF</math> contain the point <math>M</math> as desired. | Similarly circumcircle of <math>\triangle BDF</math> contain the point <math>M</math> as desired. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Circle of circumcenters== | ||
+ | [[File:Miquel point.png|450px|right]] | ||
+ | Let four lines made four triangles of a complete quadrilateral. In the diagram these are <math>\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.</math> | ||
+ | |||
+ | Prove that the circumcenters of all four triangles and point <math>M</math> are concyclic. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Let <math>\Omega, \omega, \Omega',</math> and <math>\omega'</math> be the circumcircles of <math>\triangle ABC, \triangle CEF, \triangle BDF,</math> and <math>\triangle ADE,</math> respectively. | ||
+ | |||
+ | In <math>\Omega' \angle MDF = \angle MBF.</math> | ||
+ | |||
+ | In <math>\omega' \angle MDE = \frac {\overset{\Large\frown} {ME}} {2}.</math> | ||
+ | |||
+ | <math>ME</math> is the common chord of <math>\omega</math> and <math>\omega' \implies \angle MOE = \overset{\Large\frown} {ME} \implies</math> | ||
+ | |||
+ | <cmath>\angle MO'o' = \frac {\overset{\Large\frown} {ME}} {2} = \angle MDE.</cmath> | ||
+ | |||
+ | Similarly, <math>MF</math> is the common chord of <math>\omega</math> and <math>\Omega' \implies \angle MDF = \angle Moo' = \angle MO'o'.</math> | ||
+ | |||
+ | Similarly, <math>MC</math> is the common chord of <math>\Omega</math> and <math>\omega' \implies \angle MBC = \angle MOo' \implies</math> | ||
+ | |||
+ | <math>\angle MOo' = \angle MO'o' \implies</math> points <math>M, O, O', o,</math> and <math>o'</math> are concyclic as desired. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Triangle of circumcenters== | ||
+ | [[File:Miquel perspector.png|500px|right]] | ||
+ | Let four lines made four triangles of a complete quadrilateral. | ||
+ | |||
+ | In the diagram these are <math>\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.</math> | ||
+ | |||
+ | Let points <math>O,O_A, O_B,</math> and <math>O_C</math> be the circumcenters of <math>\triangle ABC, \triangle ADE, \triangle BDF,</math> and <math>\triangle CEF,</math> respectively. | ||
+ | |||
+ | Prove that <math>\triangle O_AO_BO_C \sim \triangle ABC,</math> and perspector of these triangles point <math>X</math> is the second (different from <math>M</math>) point of intersection <math>\Omega \cap \Theta,</math> where <math>\Omega</math> is circumcircle of <math>\triangle ABC</math> and <math>\Theta</math> is circumcircle of <math>\triangle O_AO_BO_C.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Quadrungle <math>MECF</math> is cyclic <math>\implies \angle AEM = \angle BFM \implies</math> | ||
+ | <cmath>\angle AO_AM = 2\angle AEM = 2 \angle BFM = \angle BO_BM.</cmath> | ||
+ | <cmath>\angle CO_CM = 2\angle CFM = 2 \angle BFM = \angle BO_BM.</cmath> | ||
+ | <math>AO_A = MO_A, BO_B = MO_B, CO_C = MO_C \implies \triangle AO_AM \sim \triangle BO_BM \sim \triangle CO_CM.</math> | ||
+ | |||
+ | Spiral similarity sentered at point <math>M</math> with rotation angle <math>\angle AMO_A = \angle BMO_B = CMO_C</math> and the coefficient of homothety <math>\frac {AM}{MO_A} = \frac {BM}{MO_B} =\frac {CM}{MO_C}</math> mapping <math>A</math> to <math>O_A</math>, <math>B</math> to <math>O_B</math>, <math>C</math> to <math>O_C \implies \triangle O_AO_BO_C \sim \triangle ABC.</math> | ||
+ | |||
+ | <math>\triangle AO_AM, \triangle BO_BM, \triangle CO_CM</math> are triangles in double perspective at point <math>M \implies</math> | ||
+ | |||
+ | These triangles are in triple perspective <math>\implies AO_A, BO_B, CO_C</math> are concurrent at the point <math>X.</math> | ||
+ | |||
+ | The rotation angle <math>\triangle AO_AM</math> to <math>\triangle BO_BM</math> is <math>\angle O_AMO_B</math> for sides <math>O_AM</math> and <math>O_BM</math> or angle between <math>AO_A</math> and <math>BO_B</math> which is <math>\angle AXB \implies M O_AO_BX</math> is cyclic <math>\implies M O_AO_BXO_C</math> is cyclic. | ||
+ | |||
+ | Therefore <math>\angle O_AXO_B = \angle O_AO_CO_B = \angle ACB \implies ABCX</math> is cyclic as desired. | ||
+ | |||
+ | Similarly, one can prove that <math>\triangle ADE \sim \triangle OO_BO_C, \triangle BDF \sim \triangle OO_AO_C, \triangle CEF \sim \triangle OO_AO_B.</math> | ||
+ | *[[Double perspective triangles]] | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Analogue of Miquel's point== | ||
+ | [[File:5 circles.png|400px|right]] | ||
+ | Let inscribed quadrilateral <math>ABB'A'</math> and | ||
+ | |||
+ | points <math>C \in AB', C' \in A'B', D \in A'B</math> be given. | ||
+ | |||
+ | <cmath>\theta = \odot CC'B', \Theta = \odot BDD', M = \theta \cap \Theta,</cmath> | ||
+ | <cmath>E = C'D \cap \odot B'CC', D' = AB \cap CE, F = CC' \cap DD'.</cmath> | ||
+ | Prove that points <math>A, B, B',</math> and <math>M</math> are concyclic. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <cmath>\angle BMB' = \angle EMB' - \angle EMB = | ||
+ | \angle ECB' - \angle ED'B = \angle BAB' \blacksquare</cmath> | ||
+ | |||
+ | <i><b>Corollary</b></i> | ||
+ | |||
+ | The points <math>F, C, D',</math> and <math>M</math> are concyclic. | ||
+ | |||
+ | The points <math>F, C', D,</math> and <math>M</math> are concyclic. | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Six circles crossing point== | ||
+ | [[File:Fixed Miquel point.png|410px|right]] | ||
+ | Let <math>\triangle ABC,</math> point <math>P \in BC,</math> point <math>X \in \Omega = \odot ABC</math> be given. | ||
+ | |||
+ | Denote <math>Y = PX \cap \Omega, D = AX \cap BC, E = AY \cap BC,</math> | ||
+ | <cmath>\omega = \odot ADE, \theta = \odot PEY, \Theta = \odot PDX,</cmath> | ||
+ | <math>\sigma = \odot BP</math> tangent to <math>AB, \Sigma = \odot CP</math> tangent to <math>AC.</math> | ||
+ | |||
+ | Prove that the circles <math>\omega, \Omega, \theta, \Theta, \sigma,</math> and <math>\Sigma</math> have the common point. | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Let <math>M = \omega \cap \Omega \ne A.</math> | ||
+ | <cmath>\angle YCM = \angle YXM = \angle YAM = \angle EAM = \angle EDM \implies</cmath> | ||
+ | <math>\angle PDM = \angle PXM \implies</math> points <math>M,P,D,</math> and <math>X</math> are concyclic, <math>M \in \Theta.</math> Similarly <math>M \in \theta, M</math> is the Miquel point of quadrungle <math>EDXY.</math> | ||
+ | <cmath>\angle CMY = 180^\circ - \angle CAB - \angle BAY.</cmath> | ||
+ | <cmath>\angle PMY = \angle PEY = \angle ABC - \angle BAY.</cmath> | ||
+ | <cmath>\angle PMC = \angle CMY - \angle PMY = (180^\circ - \angle CAB - \angle BAY) - (\angle ABC - \angle BAY) = \angle ACB.</cmath> | ||
+ | <math>\angle PMC = \angle ACB \implies AC</math> is tangent to <math>\Sigma.</math> Similarly, <math>AB</math> is tangent to <math>\sigma.</math> | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Latest revision as of 15:18, 21 October 2024
Contents
Miquel and Steiner's quadrilateral theorem
Let four lines made four triangles of a complete quadrilateral. In the diagram these are
Prove that the circumcircles of all four triangles meet at a single point.
Proof
Let circumcircle of circle cross the circumcircle of circle at point
Let cross second time in the point
is cyclic
is cyclic
is cyclic
is cyclic and circumcircle of contain the point
Similarly circumcircle of contain the point as desired.
vladimir.shelomovskii@gmail.com, vvsss
Circle of circumcenters
Let four lines made four triangles of a complete quadrilateral. In the diagram these are
Prove that the circumcenters of all four triangles and point are concyclic.
Proof
Let and be the circumcircles of and respectively.
In
In
is the common chord of and
Similarly, is the common chord of and
Similarly, is the common chord of and
points and are concyclic as desired.
vladimir.shelomovskii@gmail.com, vvsss
Triangle of circumcenters
Let four lines made four triangles of a complete quadrilateral.
In the diagram these are
Let points and be the circumcenters of and respectively.
Prove that and perspector of these triangles point is the second (different from ) point of intersection where is circumcircle of and is circumcircle of
Proof
Quadrungle is cyclic
Spiral similarity sentered at point with rotation angle and the coefficient of homothety mapping to , to , to
are triangles in double perspective at point
These triangles are in triple perspective are concurrent at the point
The rotation angle to is for sides and or angle between and which is is cyclic is cyclic.
Therefore is cyclic as desired.
Similarly, one can prove that
vladimir.shelomovskii@gmail.com, vvsss
Analogue of Miquel's point
Let inscribed quadrilateral and
points be given.
Prove that points and are concyclic.
Proof
Corollary
The points and are concyclic.
The points and are concyclic.
vladimir.shelomovskii@gmail.com, vvsss
Six circles crossing point
Let point point be given.
Denote tangent to tangent to
Prove that the circles and have the common point.
Proof
Let points and are concyclic, Similarly is the Miquel point of quadrungle is tangent to Similarly, is tangent to
vladimir.shelomovskii@gmail.com, vvsss