Difference between revisions of "2013 AMC 10B Problems/Problem 22"
Countingkg (talk | contribs) |
|||
(32 intermediate revisions by 20 users not shown) | |||
Line 3: | Line 3: | ||
The regular octagon <math>ABCDEFGH</math> has its center at <math>J</math>. Each of the vertices and the center are to be associated with one of the digits <math>1</math> through <math>9</math>, with each digit used once, in such a way that the sums of the numbers on the lines <math>AJE</math>, <math>BJF</math>, <math>CJG</math>, and <math>DJH</math> are all equal. In how many ways can this be done? | The regular octagon <math>ABCDEFGH</math> has its center at <math>J</math>. Each of the vertices and the center are to be associated with one of the digits <math>1</math> through <math>9</math>, with each digit used once, in such a way that the sums of the numbers on the lines <math>AJE</math>, <math>BJF</math>, <math>CJG</math>, and <math>DJH</math> are all equal. In how many ways can this be done? | ||
− | <math> \textbf{(A)}\ | + | <math> \textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576 \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456 </math> |
− | == | + | <asy> |
+ | pair A,B,C,D,E,F,G,H,J; | ||
+ | A=(20,20(2+sqrt(2))); | ||
+ | B=(20(1+sqrt(2)),20(2+sqrt(2))); | ||
+ | C=(20(2+sqrt(2)),20(1+sqrt(2))); | ||
+ | D=(20(2+sqrt(2)),20); | ||
+ | E=(20(1+sqrt(2)),0); | ||
+ | F=(20,0); | ||
+ | G=(0,20); | ||
+ | H=(0,20(1+sqrt(2))); | ||
+ | J=(10(2+sqrt(2)),10(2+sqrt(2))); | ||
+ | draw(A--B); | ||
+ | draw(B--C); | ||
+ | draw(C--D); | ||
+ | draw(D--E); | ||
+ | draw(E--F); | ||
+ | draw(F--G); | ||
+ | draw(G--H); | ||
+ | draw(H--A); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | dot(G); | ||
+ | dot(H); | ||
+ | dot(J); | ||
+ | label("A",A,NNW); | ||
+ | label("B",B,NNE); | ||
+ | label("C",C,ENE); | ||
+ | label("D",D,ESE); | ||
+ | label("E",E,SSE); | ||
+ | label("F",F,SSW); | ||
+ | label("G",G,WSW); | ||
+ | label("H",H,WNW); | ||
+ | label("J",J,SE); | ||
+ | </asy> | ||
− | First of all, note that <math>J</math> must be <math>1</math>, <math>5</math>, or <math>9</math> to preserve symmetry. | + | ==Solution 1== |
+ | First of all, note that <math>J</math> must be <math>1</math>, <math>5</math>, or <math>9</math> to preserve symmetry, since the sum of 1 to 9 is 45, and we need the remaining 8 to be divisible by 4 (otherwise we will have uneven sums). So, we have: | ||
− | WLOG assume that <math>J = 1</math>. Thus the pairs of vertices must be <math>9</math> and <math>2</math>, <math>8</math> and <math>3</math>, <math>7</math> and <math>4</math>, and <math>6</math> and <math>5</math>. There are <math>4! = 24</math> ways to assign these to the vertices. Furthermore, there are <math>2^{4} = 16</math> ways to switch them (i.e. do <math>2</math> <math>9</math> instead of <math>9</math> <math>2</math>). | + | <asy> |
+ | pair A,B,C,D,E,F,G,H,J; | ||
+ | A=(20,20(2+sqrt(2))); | ||
+ | B=(20(1+sqrt(2)),20(2+sqrt(2))); | ||
+ | C=(20(2+sqrt(2)),20(1+sqrt(2))); | ||
+ | D=(20(2+sqrt(2)),20); | ||
+ | E=(20(1+sqrt(2)),0); | ||
+ | F=(20,0); | ||
+ | G=(0,20); | ||
+ | H=(0,20(1+sqrt(2))); | ||
+ | J=(10(2+sqrt(2)),10(2+sqrt(2))); | ||
+ | draw(A--B); | ||
+ | draw(B--C); | ||
+ | draw(C--D); | ||
+ | draw(D--E); | ||
+ | draw(E--F); | ||
+ | draw(F--G); | ||
+ | draw(G--H); | ||
+ | draw(H--A); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | dot(G); | ||
+ | dot(H); | ||
+ | dot(J); | ||
+ | label("A",A,NNW); | ||
+ | label("B",B,NNE); | ||
+ | label("C",C,ENE); | ||
+ | label("D",D,ESE); | ||
+ | label("E",E,SSE); | ||
+ | label("F",F,SSW); | ||
+ | label("G",G,WSW); | ||
+ | label("H",H,WNW); | ||
+ | label("J $(1, 5, 9)$",J,SE); | ||
+ | </asy> | ||
+ | |||
+ | We also notice that <math>A+E = B+F = C+G = D+H</math>. | ||
+ | |||
+ | WLOG, assume that <math>J = 1</math>. Thus the pairs of vertices must be <math>9</math> and <math>2</math>, <math>8</math> and <math>3</math>, <math>7</math> and <math>4</math>, and <math>6</math> and <math>5</math>. There are <math>4! = 24</math> ways to assign these to the vertices. Furthermore, there are <math>2^{4} = 16</math> ways to switch them (i.e. do <math>2</math> <math>9</math> instead of <math>9</math> <math>2</math>). | ||
Thus, there are <math>16(24) = 384</math> ways for each possible J value. There are <math>3</math> possible J values that still preserve symmetry: <math>384(3) = \boxed{\textbf{(C) }1152}</math> | Thus, there are <math>16(24) = 384</math> ways for each possible J value. There are <math>3</math> possible J values that still preserve symmetry: <math>384(3) = \boxed{\textbf{(C) }1152}</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | As in solution 1, <math>J</math> must be <math>1</math>, <math>5</math>, or <math>9</math> giving us 3 choices. Additionally <math>A+E = B+F = C+G = D+H</math>. This means once we choose <math>J</math> there are <math>8</math> remaining choices. Going clockwise from <math>A</math> we count, <math>8</math> possibilities for <math>A</math>. Choosing <math>A</math> also determines <math>E</math> which leaves <math>6</math> choices for <math>B</math>, once <math>B</math> is chosen it also determines <math>F</math> leaving <math>4</math> choices for <math>C</math>. Once <math>C</math> is chosen it determines <math>G</math> leaving <math>2</math> choices for <math>D</math>. Choosing <math>D</math> determines <math>H</math>, exhausting the numbers. Additionally, there are three possible values for <math>J</math>. To get the answer we multiply <math>2\cdot4\cdot6\cdot8\cdot3=\boxed{\textbf{(C) }1152}</math>. | ||
+ | |||
+ | ==Remark== | ||
+ | |||
+ | Solutions 1 and 2 state that <math>J=1, 5, 9</math> without rigorous analysis. Here it is: | ||
+ | |||
+ | Let <math>S=A+J+E=B+J+F=C+J+G=D+J+H</math> | ||
+ | <math>4S=A+B+C+D+E+F+G+H+4J</math> | ||
+ | <math>4S=45+3J</math> | ||
+ | <math>4S=3(15+J)</math> | ||
+ | |||
+ | Because <math>gcd(4,3)=1</math>, so <math>4|(15+J)</math>, but <math>15 \equiv 3 \pmod 4</math>, so <math>J \equiv 1 \pmod 4</math>, <math>J=1,5,9</math> | ||
+ | |||
+ | When <math>J=1, S=12, A+E=B+F=C+G=D+H=11</math> | ||
+ | When <math>J=5, S=15, A+E=B+F=C+G=D+H=10</math> | ||
+ | When <math>J=9, S=18, A+E=B+F=C+G=D+H=9</math> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ==Video Solution by Pi Academy== | ||
+ | |||
+ | https://youtu.be/0djZt1Fvuvw?si=TnPgQi3DnrI5IsE8 | ||
+ | |||
+ | ~ Pi Academy | ||
+ | |||
+ | ==Video Solution 2== | ||
+ | https://youtu.be/3MDr_t1ZzQk | ||
+ | |||
+ | ~IceMatrix | ||
+ | |||
+ | == See also == | ||
+ | {{AMC10 box|year=2013|ab=B|num-b=21|num-a=23}} | ||
+ | |||
+ | [[Category:Introductory Combinatorics Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 21:24, 10 October 2024
Contents
Problem
The regular octagon has its center at . Each of the vertices and the center are to be associated with one of the digits through , with each digit used once, in such a way that the sums of the numbers on the lines , , , and are all equal. In how many ways can this be done?
Solution 1
First of all, note that must be , , or to preserve symmetry, since the sum of 1 to 9 is 45, and we need the remaining 8 to be divisible by 4 (otherwise we will have uneven sums). So, we have:
We also notice that .
WLOG, assume that . Thus the pairs of vertices must be and , and , and , and and . There are ways to assign these to the vertices. Furthermore, there are ways to switch them (i.e. do instead of ).
Thus, there are ways for each possible J value. There are possible J values that still preserve symmetry:
Solution 2
As in solution 1, must be , , or giving us 3 choices. Additionally . This means once we choose there are remaining choices. Going clockwise from we count, possibilities for . Choosing also determines which leaves choices for , once is chosen it also determines leaving choices for . Once is chosen it determines leaving choices for . Choosing determines , exhausting the numbers. Additionally, there are three possible values for . To get the answer we multiply .
Remark
Solutions 1 and 2 state that without rigorous analysis. Here it is:
Let
Because , so , but , so ,
When When When
Video Solution by Pi Academy
https://youtu.be/0djZt1Fvuvw?si=TnPgQi3DnrI5IsE8
~ Pi Academy
Video Solution 2
~IceMatrix
See also
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.