Difference between revisions of "2012 AMC 12B Problems/Problem 17"

(Solution)
(Solution 7 (Pure Trig and Similarity))
 
(40 intermediate revisions by 20 users not shown)
Line 3: Line 3:
 
Square <math>PQRS</math> lies in the first quadrant. Points <math>(3,0), (5,0), (7,0),</math> and <math>(13,0)</math> lie on lines <math>SP, RQ, PQ</math>, and <math>SR</math>, respectively. What is the sum of the coordinates of the center of the square <math>PQRS</math>?
 
Square <math>PQRS</math> lies in the first quadrant. Points <math>(3,0), (5,0), (7,0),</math> and <math>(13,0)</math> lie on lines <math>SP, RQ, PQ</math>, and <math>SR</math>, respectively. What is the sum of the coordinates of the center of the square <math>PQRS</math>?
  
<math> \textbf{(A)}\ 6\qquad\textbf{(B)}\ 6.2\qquad\textbf{(C)}\ 6.4\qquad\textbf{(D)}\ 6.6\qquad\textbf{(E)}\ 6.8 </math>
+
<math> \textbf{(A)}\ 6\qquad\textbf{(B) }\frac{31}5\qquad\textbf{(C) }\frac{32}5\qquad\textbf{(D) }\frac{33}5\qquad\textbf{(E) }\frac{34}5 </math>
 +
 
 +
==Diagram==
 +
 
 +
<asy> size(7cm); pair A=(0,0),B=(1,1.5),D=B*dir(-90),C=B+D-A; draw((-4,-2)--(8,-2), Arrows); draw(A--B--C--D--cycle); pair AB = extension(A,B,(0,-2),(1,-2)); pair BC = extension(B,C,(0,-2),(1,-2)); pair CD = extension(C,D,(0,-2),(1,-2)); pair DA = extension(D,A,(0,-2),(1,-2)); draw(A--AB--B--BC--C--CD--D--DA--A, dotted); dot(AB^^BC^^CD^^DA);</asy>
 +
 
 +
(diagram by MSTang)
  
 
==Solution 1==
 
==Solution 1==
  
Let the four points be labeled P1, P2, P3, and P4, respectively. Let the lines that go through each point be labeled L1, L2, L3, and L4, respectively. Since L1 and L2 go through SP and RQ, respectively, and SP and RQ are opposite sides of the square, we can say that L1 and L2 are parallel with slope m. Similarly, L3 and L4 have slope -1/m. Also, note that since square PQRS lies in the first quadrant, L1 and L2 must have a positive slope.
+
<asy> size(14cm);
 +
pair A=(3,0),B=(5,0),C=(7,0),D=(13,0),EE=(4,0),F=(10,0),P=(3.4,1.2),Q=(5.2,0.6),R=(5.8,2.4),SS=(4,3),M=(4.6,1.8),G=(3.2,0.6),H=(7.6,1.8);
 +
 
 +
dot(A^^B^^C^^D^^EE^^F^^P^^Q^^R^^SS^^M^^G^^H);
 +
draw(A--SS--D--cycle);
 +
draw(P--Q--R^^B--Q--C);
 +
draw(EE--M--F^^G--B^^C--H,dotted);
 +
 
 +
label("A",A,SW);
 +
label("B",B,S);
 +
label("C",C,S);
 +
label("D",D,SE);
 +
label("E",EE,S);
 +
label("F",F,S);
 +
label("P",P,W);
 +
label("Q",Q,NW);
 +
label("R",R,NE);
 +
label("S",SS,N);
 +
label("M",M,S);
 +
label("G",G,W);
 +
label("H",H,NE);</asy>
 +
 
 +
Construct the midpoints <math>E=(4,0)</math> and <math>F=(10,0)</math> and triangle <math>\triangle EMF</math> as in the diagram, where <math>M</math> is the center of square <math>PQRS</math>. Also construct points <math>G</math> and <math>H</math> as in the diagram so that <math>BG\parallel PQ</math> and <math>CH\parallel QR</math>.
 +
 
 +
Observe that <math>\triangle AGB\sim\triangle CHD</math> while <math>PQRS</math> being a square implies that <math>GB=CH</math>. Furthermore, <math>CD=6=3\cdot AB</math>, so <math>\triangle CHD</math> is 3 times bigger than <math>\triangle AGB</math>. Therefore, <math>HD=3\cdot GB=3\cdot HC</math>. In other words, the longer leg is 3 times the shorter leg in any triangle similar to <math>\triangle AGB</math>.
 +
 
 +
Let <math>K</math> be the foot of the perpendicular from <math>M</math> to <math>EF</math>, and let <math>x=EK</math>. Triangles <math>\triangle EKM</math> and <math>\triangle MKF</math>, being similar to <math>\triangle AGB</math>, also have legs in a 1:3 ratio, therefore, <math>MK=3x</math> and <math>KF=9x</math>, so <math>10x=EF=6</math>. It follows that <math>EK=0.6</math> and <math>MK=1.8</math>, so the coordinates of <math>M</math> are <math>(4+0.6,1.8)=(4.6,1.8)</math> and so our answer is <math>4.6+1.8 = 6.4 =</math> <math>\boxed{\mathbf{(C)}\ 32/5}</math>.
 +
 
 +
 
 +
==Solution 2==
 +
 
 +
<asy> size(7cm); pair A=(0,0),B=(1,1.5),D=B*dir(-90),C=B+D-A; draw((-4,-2)--(8,-2), Arrows); draw(A--B--C--D--cycle); pair AB = extension(A,B,(0,-2),(1,-2)); pair BC = extension(B,C,(0,-2),(1,-2)); pair CD = extension(C,D,(0,-2),(1,-2)); pair DA = extension(D,A,(0,-2),(1,-2)); draw(A--AB--B--BC--C--CD--D--DA--A, dotted); dot(AB^^BC^^CD^^DA);</asy>
 +
 
 +
Let the four points be labeled <math>P_1</math>, <math>P_2</math>, <math>P_3</math>, and <math>P_4</math>, respectively. Let the lines that go through each point be labeled <math>L_1</math>, <math>L_2</math>, <math>L_3</math>, and <math>L_4</math>, respectively. Since <math>L_1</math> and <math>L_2</math> go through <math>SP</math> and <math>RQ</math>, respectively, and <math>SP</math> and <math>RQ</math> are opposite sides of the square, we can say that <math>L_1</math> and <math>L_2</math> are parallel with slope <math>m</math>. Similarly, <math>L_3</math> and <math>L_4</math> have slope <math>-\frac{1}{m}</math>. Also, note that since square <math>PQRS</math> lies in the first quadrant, <math>L_1</math> and <math>L_2</math> must have a positive slope. Using the point-slope form, we can now find the equations of all four lines: <math>L_1: y = m(x-3)</math>, <math>L_2: y = m(x-5)</math>, <math>L_3: y = -\frac{1}{m}(x-7)</math>, <math>L_4: y = -\frac{1}{m}(x-13)</math>.
 +
 
 +
 
 +
Since <math>PQRS</math> is a square, it follows that <math>\Delta x</math> between points <math>P</math> and <math>Q</math> is equal to <math>\Delta y</math> between points <math>Q</math> and <math>R</math>. Our approach will be to find <math>\Delta x</math> and <math>\Delta y</math> in terms of <math>m</math> and equate the two to solve for <math>m</math>. <math>L_1</math> and <math>L_3</math> intersect at point <math>P</math>. Setting the equations for <math>L_1</math> and <math>L_3</math> equal to each other and solving for <math>x</math>, we find that they intersect at <math>x = \frac{3m^2 + 7}{m^2 + 1}</math>. <math>L_2</math> and <math>L_3</math> intersect at point <math>Q</math>. Intersecting the two equations, the <math>x</math>-coordinate of point <math>Q</math> is found to be <math>x = \frac{5m^2 + 7}{m^2 + 1}</math>. Subtracting the two, we get <math>\Delta x = \frac{2m^2}{m^2 + 1}</math>. Substituting the <math>x</math>-coordinate for point <math>Q</math> found above into the equation for <math>L_2</math>, we find that the <math>y</math>-coordinate of point <math>Q</math> is <math>y = \frac{2m}{m^2+1}</math>. <math>L_2</math> and <math>L_4</math> intersect at point <math>R</math>. Intersecting the two equations, the <math>y</math>-coordinate of point <math>R</math> is found to be <math>y = \frac{8m}{m^2 + 1}</math>. Subtracting the two, we get <math>\Delta y = \frac{6m}{m^2 + 1}</math>. Equating <math>\Delta x</math> and <math>\Delta y</math>, we get <math>2m^2 = 6m</math> which gives us <math>m = 3</math>. Finally, note that the line which goes though the midpoint of <math>P_1</math> and <math>P_2</math> with slope <math>3</math> and the line which goes through the midpoint of <math>P_3</math> and <math>P_4</math> with slope <math>-\frac{1}{3}</math> must intersect at at the center of the square. The equation of the line going through <math>(4,0)</math> is given by <math>y = 3(x-4)</math> and the equation of the line going through <math>(10,0)</math> is <math>y = -\frac{1}{3}(x-10)</math>. Equating the two, we find that they intersect at <math>(4.6, 1.8)</math>. Adding the <math>x</math> and <math>y</math>-coordinates, we get <math>6.4 = 32/5</math>. Thus, answer choice <math>\boxed{\textbf{(C)}}</math> is correct.
 +
 
 +
==Solution 3==
 +
 
 +
Note that the center of the square lies along a line that has an <math>x-</math>intercept of <math>\frac{3+5}{2}=4</math>, and also along another line with <math>x-</math>intercept <math>\frac{7+13}{2}=10</math>. Since these 2 lines are parallel to the sides of the square, they are perpendicular (since the sides of a square are). Let <math>m</math> be the slope of the first line. Then <math>-\frac{1}{m}</math> is the slope of the second line. We may use the point-slope form for the equation of a line to write <math>l_1:y=m(x-4)</math> and <math>l_2:y=-\frac{1}{m}(x-10)</math>. We easily calculate the intersection of these lines using substitution or elimination to obtain <math>\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)</math> as the center or the square. Let <math>\theta</math> denote the (acute) angle formed by <math>l_1</math> and the <math>x-</math>axis. Note that <math>\tan\theta=m</math>. Let <math>s</math> denote the side length of the square. Then <math>\sin\theta=s/2</math>. On the other hand the acute angle formed by <math>l_2</math> and the <math>x-</math>axis is <math>90-\theta</math> so that <math>\cos\theta=\sin(90-\theta)=s/6</math>. Then <math>m=\tan\theta=3</math>. Substituting into <math>\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)</math> we obtain <math>\left(\frac{23}{5},\frac{9}{5}\right)</math> so that the sum of the coordinates is <math>\frac{32}{5}=6.4</math>. Hence the answer is <math>\framebox{C}</math>.
 +
 
 +
==Solution 4 (Fast)==
 +
Suppose
 +
 
 +
<cmath>SP: y=m(x-3)</cmath>
 +
<cmath>RQ: y=m(x-5)</cmath>
 +
<cmath>PQ: -my=x-7</cmath>
 +
<cmath>SR: -my=x-13</cmath>
 +
 
 +
where <math>m >0</math>.
 +
 
 +
Recall that the distance between two parallel lines <math>Ax+By+C=0</math> and <math>Ax+By+C_1=0</math> is <math>|C-C_1|/\sqrt{A^2+B^2}</math>, we have distance between <math>SP</math> and <math>RQ</math> equals to <math>2m/\sqrt{1+m^2}</math>, and the distance between <math>PQ</math> and <math>SR</math> equals to <math>6/\sqrt{1+m^2}</math>. Equating them, we get <math>m=3</math>.
 +
 
 +
Then, the center of the square is just the intersection between the following two "mid" lines:
 +
 
 +
<cmath>L_1: y=3(x-4)</cmath>
 +
<cmath>L_2: -3y = x-10</cmath>
 +
 
 +
The solution is <math>(4.6,1.8)</math>, so we get the answer <math>4.6+1.8=6.4</math>.  <math>\framebox{C}</math>.
 +
 
 +
==Solution 5 (Trigonometry)==
  
 +
Using the diagram shown in Solution 1, we can set angle <math>BCQ</math> as <math>\theta</math>. We know that <math>AB=2</math> and <math>BC=2</math>. Now using <math>AA</math>
  
Using the point-slope form, we can now find the equations of all four lines:
+
similarity, we know that <math>\triangle BCQ\sim\triangle ACP</math> in a <math>1:2</math> ratio. Now we can see that <math>CQ=-2</math><math>\cos\theta</math>, therefore,
  
L1: y = m(x-3)
+
meaning that <math>PQ=-2</math><math>\cos\theta</math>. <math>PQRS</math> is a square, so <math>QR=-2</math><math>\cos\theta</math>. We also know that <math>QCHR</math> is also a square since its
  
L2: y = m(x-5)
+
angles are <math>90^\circ</math> and all of its sides are equal. Because squares <math>PQRS</math> and <math>QCHR</math> have equal side lengths, they are
  
L3: y = (-1/m)(x-7)
+
congruent leading to the conclusion that side <math>CH=-2</math><math>\cos\theta</math>. Since <math>PQRS</math> is a square, lines <math>PQ</math> and <math>SR</math> are parallel
  
L4: y = (-1/m)(x-13)
+
meaning that angle <math>CDH</math> and angle <math>BCQ</math> are congruent. We can easily calculate that the length of <math>CD=6</math> and furthermore that
  
 +
<math>CH=6</math><math>\sin\theta</math>. Setting <math>6\sin\theta=-2\cos\theta</math>, we get that <math>\tan\theta=-1/3</math>. This means <math>-1/3</math> is the slope of line <math>PQ</math>
  
Note that since PQRS is a square, it follows that the Delta x between points P and Q is equal to the Delta y between Points Q and R. Our approach will be to find Delta x and Delta y in terms of m and equate the two to solve for m.
+
and the lines parallel to it. This is good news because we are dealing with easy numbers. We can solve for the coordinates of
  
 +
points <math>E</math> and <math>F</math> because they are the midpoints. This will make solving for the center of square <math>PQRS</math> easier. <math>E=(4,0)</math> and
  
L1 and L3 intersect at Point P. Setting the equations for L1 and L3 equal to each other and solving for x, we find that they intersect at x = (3m^2 + 7)/(m^2 + 1). Similarly the x-coordinate of Point Q is found to be x = (5m^2 + 7)/(m^2 + 1). Subtracting the two, we get Delta x = (2m^2)/(m^2 + 1).
+
<math>F=(10,0)</math>. We know the slopes of lines <math>MF</math> and <math>ME</math>, which are <math>-1/3</math> and <math>3</math> respectively. Now we can get the two equations.
  
 +
<cmath>\left\{\begin{array}{l}y=-1/3x+10/3\\y=3x-12\end{array}\right.</cmath>
  
Substituting the x-coordinate for Point Q found above into the equation for L2, we find that the y-coordinate for Point Q is y = 2m/(m^2+1). Intersecting L2 and L4, we find the x-coordinate of Point R to be x = (5m^2 + 13)/(m^2 + 1). Substituting this into the equation for L2, we find the y-coordinate for Point R is y = 8m/(m^2 + 1). Subtracting the two, we get Delta y = 6m/(m^2 + 1).
+
By solving: <center><math> -1/3x+10/3=3x-12, </math></center>we find that <math>x=4.6</math>. Then plugging <math>x</math> back into one of the first equations, we can find <math>y</math> and the final coordinate turns out to be <math>(4.6,1.8)</math>. Summing up the values of <math>x</math> and <math>y</math>, you get <math>4.6+1.8=6.4=32/5</math>.  <math>\boxed{\mathbf{(C)}\ 32/5}</math>.
  
  
Equating Delta x and Delta y, we get: 2m^2 = 6m which gives us m = 3. Finally, note that the line which goes though the midpoint of P1 and P2 with slope 3 and the line which goes through the midpoint of P3 and P4 with slope -1/3, must intersect at at the center of the square. The equation of the line going through (4,0) is given by y = 3(x-4) and the equation of the line going through (10,0) is y = (-1/3)(x-10). Equating the two, we find that they intersect at (4.6, 1.8). Adding the x and y-coordinates, we get 6.4. Thus, the answer is C.
+
~kempwood
  
--[[User:Jm314|Jm314]] 12:51, 26 February 2012 (EST)
+
== Solution 6 ==
  
==Solution 2==
+
<asy> size(14cm);
 +
pair A=(3,0),B=(5,0),C=(7,0),D=(13,0),EE=(4,0),F=(10,0),P=(3.4,1.2),Q=(5.2,0.6),R=(5.8,2.4),SS=(4,3),M=(4.6,1.8),G=(3.2,0.6),H=(7.6,1.8);
 +
 
 +
dot(A^^B^^C^^D^^EE^^F^^P^^Q^^R^^SS^^M^^G^^H);
 +
draw(A--SS--D--cycle);
 +
draw(P--Q--R^^B--Q--C);
 +
draw(EE--M--F^^G--B^^C--H,dotted);
 +
 
 +
label("A",A,SW);
 +
label("B",B,S);
 +
label("C",C,S);
 +
label("D",D,SE);
 +
label("E",EE,S);
 +
label("F",F,S);
 +
label("P",P,W);
 +
label("Q",Q,NW);
 +
label("R",R,NE);
 +
label("S",SS,N);
 +
label("M",M,S);
 +
label("G",G,W);
 +
label("H",H,NE);</asy>
 +
 
 +
<math>SP: y = mx - 3m</math>, <math>RQ: y = mx-5m</math>, <math>PQ: y = -\frac{1}{m}x + \frac{7}{m}</math>, <math>SR: y = -\frac{1}{m}x + \frac{13}{m}</math>
 +
 
 +
Let <math>SP = RP = PQ = SR = a</math>, <math>\angle GAB = \angle HCD = \theta</math>, and the slope of <math>SP</math> be <math>m</math>.
 +
 
 +
When the slope of <math>SP</math> is <math>m</math>, the slope of <math>SR</math> is <math>-\frac{1}{m}</math>, <math>\tan \theta = m</math>, <math>\cot \theta = -\frac{1}{m}</math>
 +
 
 +
<math>\sin \theta = \frac{GB}{AB} = \frac{a}{2}</math>, <math>\cos \theta = \frac{HC}{CD} = \frac{a}{6}</math>
 +
 
 +
As <math>\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{a}{2}}{\frac{a}{6}} = 3</math>, <math>m = 3</math>
 +
 
 +
<math>SP: y = 3x - 9</math>, <math>RQ: y = 3x-15</math>, <math>PQ: y = -\frac{1}{3}x + \frac{7}{3}</math>, <math>SR: y = -\frac{1}{3}x + \frac{13}{3}</math>
 +
 
 +
<math>3x - 9 = -\frac{1}{3}x + \frac{13}{3}</math>, <math>x = 4</math>, <math>y = 3</math>, <math>S = (4, 3)</math>
 +
 
 +
<math>3x-15 = -\frac{1}{3}x + \frac{7}{3}</math>, <math>x = 5.2</math>, <math>y = 0.6</math>, <math>Q = (5.2, 0.6)</math>
 +
 
 +
<math>M = (4.6, 1.8)</math>, <math>4.6 + 1.8 = \boxed{\mathbf{(C)}\ 32/5}</math>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 
 +
== Solution 7 (Pure Trig and Similarity) ==
 +
 
 +
<asy>
 +
unitsize(1 cm);
 +
pair P,Q,R,S,A,B,C,D,E,F,F1,F2,F3,M;
 +
P = (3.4,1.2);
 +
Q = (5.2,0.6);
 +
R = (5.8,2.4);
 +
S = (4,3);
 +
A = (3,0);
 +
B = (5,0);
 +
C = (7,0);
 +
D = (13,0);
 +
E = (3.2,0.6);
 +
F = (7.6,1.8);
 +
F1 = (3.2,0);
 +
F2 = (3.4,0);
 +
F3 = (5.8,0);
 +
M = (4.6,1.8);
 +
dot(P);
 +
dot(Q);
 +
dot(R);
 +
dot(S);
 +
dot(A);
 +
dot(B);
 +
dot(C);
 +
dot(D);
 +
dot(E);
 +
dot(F);
 +
dot(F1);
 +
dot(F2);
 +
dot(F3);
 +
dot(M);
 +
draw(P--Q--R--S--cycle);
 +
draw(P--A);
 +
draw(Q--B);
 +
draw(R--D);
 +
draw(Q--C);
 +
draw(A--D);
 +
draw(B--E, dashed);
 +
draw(C--F, dashed);
 +
draw(E--F1, dashed);
 +
draw(P--F2, dashed);
 +
draw(R--F3, dashed);
 +
draw(P--R, dashed);
 +
label("$A$",A,W);
 +
label("$B$",B,SW);
 +
label("$C$",C,SW);
 +
label("$D$",D,SW);
 +
label("$P$",P,W);
 +
label("$Q$",Q,ENE);
 +
label("$R$",R,N);
 +
label("$S$",S,N);
 +
label("$E$",E,NW);
 +
label("$F$",F,NE);
 +
label("$F_1$",F1,SSW);
 +
label("$F_2$",F2,SE);
 +
label("$F_3$",F3,SW);
 +
label("$M$",M,NW);
 +
</asy>
 +
Let <math>PQ=x</math> and <math>\angle PCA=\theta.</math> Draw the line <math>BE</math> such that <math>E</math> is on <math>AP</math> and <math>BE\parallel PQ.</math> Also, Draw the line <math>CF</math> such that <math>F</math> is on <math>DR</math> and <math>CF\parallel RQ.</math> Then <math>EB=FC=x</math> and <math>\angle EBA=\angle FDC=\theta.</math> Also, note that <math>AB=2</math> and <math>CD=6.</math> Hence:
 +
<cmath>\cos(\theta)=\frac{x}{2},\sin(\theta)=\frac{x}{6}.</cmath>
 +
Thus <math>\cos(\theta)=3\sin(\theta).</math> Since <math>\theta<\frac{\pi}{2},</math> <math>\sin(\theta)=\sqrt{1-\cos^2(\theta)},</math> so <math>\cos(\theta)=3\sqrt{1-\cos^2(\theta)}.</math> Hence, <math>\cos(\theta)=\frac{3}{\sqrt{10}}</math> and <math>x=\frac{6}{\sqrt{10}}.</math> Draw the perpendicular lines <math>EF_1\perp AD,PF_2\perp AD,RF_3\perp AD.</math> Note that:
 +
<cmath>F_1B=BE\cdot\cos(\theta)=\frac{6}{\sqrt{10}}\cdot\frac{3}{\sqrt{10}}=\frac{9}{5}.</cmath>
 +
Hence:
 +
<cmath>EF_1=\sqrt{EB^2-EF_1^2}=\sqrt{\frac{18}{5}-\frac{81}{25}}=\frac{3}{5}.</cmath>
 +
Note that <math>\triangle EF_1B\sim\triangle PF_2C,</math> so:
 +
<cmath>\frac{PF_2}{EF_1}=\frac{F_2C}{F_1B}=\frac{AC}{AB}=2.</cmath>
 +
Hence:
 +
<cmath>PF_2=\frac{6}{5}, F_2C=\frac{18}{5}.</cmath>
 +
So <math>P</math> has coordinates:
 +
<cmath>\left(7-\frac{18}{5},\frac{6}{5}\right)=\left(\frac{17}{5},\frac{6}{5}\right).</cmath>
 +
Also note that <math>\triangle EF_1B\sim\triangle RF_3D,</math> so:
 +
<cmath>\frac{RF_3}{EF_1}=\frac{F_3D}{F_1B}=\frac{BD}{AB}=4.</cmath>
 +
Hence:
 +
<cmath>RF_3=\frac{12}{5}, F_3D=\frac{36}{5}.</cmath>
 +
So <math>R</math> has coordinates:
 +
<cmath>\left(13-\frac{36}{5},\frac{12}{5}\right)=\left(\frac{29}{5},\frac{12}{5}\right).</cmath>
 +
Hence, the center of square <math>PQRS,</math> which is also the midpoint of <math>PR,</math> has coordinates:
 +
<cmath>\left(\frac{\frac{17}{5}+\frac{29}{5}}{2},\frac{\frac{6}{5}+\frac{12}{5}}{2}\right)=\left(\frac{23}{5},\frac{9}{5}\right).</cmath>
 +
We thus see that the answer is:
 +
<cmath>\frac{23}{5}+\frac{9}{5}=\boxed{\text{(C)}\frac{32}{5}}.</cmath>
 +
 
 +
== See Also ==
 +
 
 +
{{AMC12 box|year=2012|ab=B|num-b=16|num-a=18}}
  
Note that the center of the square lies along a line that has an <math>x-</math>intercept of <math>\frac{3+5}{2}=4</math>, and also along another line with <math>x-</math>intercept <math>\frac{7+13}{2}=10</math>. Since these 2 lines are parallel to the sides of the square, they are perpindicular (since the sides of a square are). Let <math>m</math> be the slope of the first line. Then <math>-\frac{1}{m}</math> is the slope of the second line. We may use the point-slope form for the equation of a line to write <math>l_1:y=m(x-4)</math> and <math>l_2:y=-\frac{1}{m}(x-10)</math>. We easily calculate the intersection of these lines using substitution or elimination to obtain <math>\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)</math> as the center or the square. Let <math>\theta</math> denote the (acute) angle formed by <math>l_1</math> and the <math>x-</math>axis. Note that <math>\tan\theta=m</math>. Let <math>s</math> denote the side length of the square. Then <math>\sin\theta=s/2</math>. On the other hand the acute angle formed by <math>l_2</math> and the <math>x-</math>axis is <math>90-\theta</math> so that <math>\cos\theta=\sin(90-\theta)=s/6</math>. Using <math>\cos\theta=\sqrt{1-\sin^2\theta}</math> (for acute <math>\theta</math>) we have <math>\frac{s}{6}=\sqrt{1-\left(\frac{s}{2}\right)^2}</math> where upon <math>s=\frac{3\sqrt{10}}{5}</math>. Then <math>m=\tan\theta=3</math>. Substituting into <math>\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)</math> we obtain <math>\left(\frac{23}{5},\frac{9}{5}\right)</math> so that the sum of the coordinates is <math>\frac{32}{5}=6.4</math>. Hence the answer is <math>\framebox{C}</math>.
+
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 09:49, 10 October 2024

Problem

Square $PQRS$ lies in the first quadrant. Points $(3,0), (5,0), (7,0),$ and $(13,0)$ lie on lines $SP, RQ, PQ$, and $SR$, respectively. What is the sum of the coordinates of the center of the square $PQRS$?

$\textbf{(A)}\ 6\qquad\textbf{(B) }\frac{31}5\qquad\textbf{(C) }\frac{32}5\qquad\textbf{(D) }\frac{33}5\qquad\textbf{(E) }\frac{34}5$

Diagram

[asy] size(7cm); pair A=(0,0),B=(1,1.5),D=B*dir(-90),C=B+D-A; draw((-4,-2)--(8,-2), Arrows); draw(A--B--C--D--cycle); pair AB = extension(A,B,(0,-2),(1,-2)); pair BC = extension(B,C,(0,-2),(1,-2)); pair CD = extension(C,D,(0,-2),(1,-2)); pair DA = extension(D,A,(0,-2),(1,-2)); draw(A--AB--B--BC--C--CD--D--DA--A, dotted); dot(AB^^BC^^CD^^DA);[/asy]

(diagram by MSTang)

Solution 1

[asy] size(14cm); pair A=(3,0),B=(5,0),C=(7,0),D=(13,0),EE=(4,0),F=(10,0),P=(3.4,1.2),Q=(5.2,0.6),R=(5.8,2.4),SS=(4,3),M=(4.6,1.8),G=(3.2,0.6),H=(7.6,1.8);  dot(A^^B^^C^^D^^EE^^F^^P^^Q^^R^^SS^^M^^G^^H); draw(A--SS--D--cycle); draw(P--Q--R^^B--Q--C); draw(EE--M--F^^G--B^^C--H,dotted);  label("A",A,SW); label("B",B,S); label("C",C,S); label("D",D,SE); label("E",EE,S); label("F",F,S); label("P",P,W); label("Q",Q,NW); label("R",R,NE); label("S",SS,N); label("M",M,S); label("G",G,W); label("H",H,NE);[/asy]

Construct the midpoints $E=(4,0)$ and $F=(10,0)$ and triangle $\triangle EMF$ as in the diagram, where $M$ is the center of square $PQRS$. Also construct points $G$ and $H$ as in the diagram so that $BG\parallel PQ$ and $CH\parallel QR$.

Observe that $\triangle AGB\sim\triangle CHD$ while $PQRS$ being a square implies that $GB=CH$. Furthermore, $CD=6=3\cdot AB$, so $\triangle CHD$ is 3 times bigger than $\triangle AGB$. Therefore, $HD=3\cdot GB=3\cdot HC$. In other words, the longer leg is 3 times the shorter leg in any triangle similar to $\triangle AGB$.

Let $K$ be the foot of the perpendicular from $M$ to $EF$, and let $x=EK$. Triangles $\triangle EKM$ and $\triangle MKF$, being similar to $\triangle AGB$, also have legs in a 1:3 ratio, therefore, $MK=3x$ and $KF=9x$, so $10x=EF=6$. It follows that $EK=0.6$ and $MK=1.8$, so the coordinates of $M$ are $(4+0.6,1.8)=(4.6,1.8)$ and so our answer is $4.6+1.8 = 6.4 =$ $\boxed{\mathbf{(C)}\ 32/5}$.


Solution 2

[asy] size(7cm); pair A=(0,0),B=(1,1.5),D=B*dir(-90),C=B+D-A; draw((-4,-2)--(8,-2), Arrows); draw(A--B--C--D--cycle); pair AB = extension(A,B,(0,-2),(1,-2)); pair BC = extension(B,C,(0,-2),(1,-2)); pair CD = extension(C,D,(0,-2),(1,-2)); pair DA = extension(D,A,(0,-2),(1,-2)); draw(A--AB--B--BC--C--CD--D--DA--A, dotted); dot(AB^^BC^^CD^^DA);[/asy]

Let the four points be labeled $P_1$, $P_2$, $P_3$, and $P_4$, respectively. Let the lines that go through each point be labeled $L_1$, $L_2$, $L_3$, and $L_4$, respectively. Since $L_1$ and $L_2$ go through $SP$ and $RQ$, respectively, and $SP$ and $RQ$ are opposite sides of the square, we can say that $L_1$ and $L_2$ are parallel with slope $m$. Similarly, $L_3$ and $L_4$ have slope $-\frac{1}{m}$. Also, note that since square $PQRS$ lies in the first quadrant, $L_1$ and $L_2$ must have a positive slope. Using the point-slope form, we can now find the equations of all four lines: $L_1: y = m(x-3)$, $L_2: y = m(x-5)$, $L_3: y = -\frac{1}{m}(x-7)$, $L_4: y = -\frac{1}{m}(x-13)$.


Since $PQRS$ is a square, it follows that $\Delta x$ between points $P$ and $Q$ is equal to $\Delta y$ between points $Q$ and $R$. Our approach will be to find $\Delta x$ and $\Delta y$ in terms of $m$ and equate the two to solve for $m$. $L_1$ and $L_3$ intersect at point $P$. Setting the equations for $L_1$ and $L_3$ equal to each other and solving for $x$, we find that they intersect at $x = \frac{3m^2 + 7}{m^2 + 1}$. $L_2$ and $L_3$ intersect at point $Q$. Intersecting the two equations, the $x$-coordinate of point $Q$ is found to be $x = \frac{5m^2 + 7}{m^2 + 1}$. Subtracting the two, we get $\Delta x = \frac{2m^2}{m^2 + 1}$. Substituting the $x$-coordinate for point $Q$ found above into the equation for $L_2$, we find that the $y$-coordinate of point $Q$ is $y = \frac{2m}{m^2+1}$. $L_2$ and $L_4$ intersect at point $R$. Intersecting the two equations, the $y$-coordinate of point $R$ is found to be $y = \frac{8m}{m^2 + 1}$. Subtracting the two, we get $\Delta y = \frac{6m}{m^2 + 1}$. Equating $\Delta x$ and $\Delta y$, we get $2m^2 = 6m$ which gives us $m = 3$. Finally, note that the line which goes though the midpoint of $P_1$ and $P_2$ with slope $3$ and the line which goes through the midpoint of $P_3$ and $P_4$ with slope $-\frac{1}{3}$ must intersect at at the center of the square. The equation of the line going through $(4,0)$ is given by $y = 3(x-4)$ and the equation of the line going through $(10,0)$ is $y = -\frac{1}{3}(x-10)$. Equating the two, we find that they intersect at $(4.6, 1.8)$. Adding the $x$ and $y$-coordinates, we get $6.4 = 32/5$. Thus, answer choice $\boxed{\textbf{(C)}}$ is correct.

Solution 3

Note that the center of the square lies along a line that has an $x-$intercept of $\frac{3+5}{2}=4$, and also along another line with $x-$intercept $\frac{7+13}{2}=10$. Since these 2 lines are parallel to the sides of the square, they are perpendicular (since the sides of a square are). Let $m$ be the slope of the first line. Then $-\frac{1}{m}$ is the slope of the second line. We may use the point-slope form for the equation of a line to write $l_1:y=m(x-4)$ and $l_2:y=-\frac{1}{m}(x-10)$. We easily calculate the intersection of these lines using substitution or elimination to obtain $\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)$ as the center or the square. Let $\theta$ denote the (acute) angle formed by $l_1$ and the $x-$axis. Note that $\tan\theta=m$. Let $s$ denote the side length of the square. Then $\sin\theta=s/2$. On the other hand the acute angle formed by $l_2$ and the $x-$axis is $90-\theta$ so that $\cos\theta=\sin(90-\theta)=s/6$. Then $m=\tan\theta=3$. Substituting into $\left(\frac{4m^2+10}{m^2+1},\frac{6m}{m^2+1}\right)$ we obtain $\left(\frac{23}{5},\frac{9}{5}\right)$ so that the sum of the coordinates is $\frac{32}{5}=6.4$. Hence the answer is $\framebox{C}$.

Solution 4 (Fast)

Suppose

\[SP: y=m(x-3)\] \[RQ: y=m(x-5)\] \[PQ: -my=x-7\] \[SR: -my=x-13\]

where $m >0$.

Recall that the distance between two parallel lines $Ax+By+C=0$ and $Ax+By+C_1=0$ is $|C-C_1|/\sqrt{A^2+B^2}$, we have distance between $SP$ and $RQ$ equals to $2m/\sqrt{1+m^2}$, and the distance between $PQ$ and $SR$ equals to $6/\sqrt{1+m^2}$. Equating them, we get $m=3$.

Then, the center of the square is just the intersection between the following two "mid" lines:

\[L_1: y=3(x-4)\] \[L_2: -3y = x-10\]

The solution is $(4.6,1.8)$, so we get the answer $4.6+1.8=6.4$. $\framebox{C}$.

Solution 5 (Trigonometry)

Using the diagram shown in Solution 1, we can set angle $BCQ$ as $\theta$. We know that $AB=2$ and $BC=2$. Now using $AA$

similarity, we know that $\triangle BCQ\sim\triangle ACP$ in a $1:2$ ratio. Now we can see that $CQ=-2$$\cos\theta$, therefore,

meaning that $PQ=-2$$\cos\theta$. $PQRS$ is a square, so $QR=-2$$\cos\theta$. We also know that $QCHR$ is also a square since its

angles are $90^\circ$ and all of its sides are equal. Because squares $PQRS$ and $QCHR$ have equal side lengths, they are

congruent leading to the conclusion that side $CH=-2$$\cos\theta$. Since $PQRS$ is a square, lines $PQ$ and $SR$ are parallel

meaning that angle $CDH$ and angle $BCQ$ are congruent. We can easily calculate that the length of $CD=6$ and furthermore that

$CH=6$$\sin\theta$. Setting $6\sin\theta=-2\cos\theta$, we get that $\tan\theta=-1/3$. This means $-1/3$ is the slope of line $PQ$

and the lines parallel to it. This is good news because we are dealing with easy numbers. We can solve for the coordinates of

points $E$ and $F$ because they are the midpoints. This will make solving for the center of square $PQRS$ easier. $E=(4,0)$ and

$F=(10,0)$. We know the slopes of lines $MF$ and $ME$, which are $-1/3$ and $3$ respectively. Now we can get the two equations.

\[\left\{\begin{array}{l}y=-1/3x+10/3\\y=3x-12\end{array}\right.\]

By solving:

$-1/3x+10/3=3x-12,$

we find that $x=4.6$. Then plugging $x$ back into one of the first equations, we can find $y$ and the final coordinate turns out to be $(4.6,1.8)$. Summing up the values of $x$ and $y$, you get $4.6+1.8=6.4=32/5$. $\boxed{\mathbf{(C)}\ 32/5}$.


~kempwood

Solution 6

[asy] size(14cm); pair A=(3,0),B=(5,0),C=(7,0),D=(13,0),EE=(4,0),F=(10,0),P=(3.4,1.2),Q=(5.2,0.6),R=(5.8,2.4),SS=(4,3),M=(4.6,1.8),G=(3.2,0.6),H=(7.6,1.8);  dot(A^^B^^C^^D^^EE^^F^^P^^Q^^R^^SS^^M^^G^^H); draw(A--SS--D--cycle); draw(P--Q--R^^B--Q--C); draw(EE--M--F^^G--B^^C--H,dotted);  label("A",A,SW); label("B",B,S); label("C",C,S); label("D",D,SE); label("E",EE,S); label("F",F,S); label("P",P,W); label("Q",Q,NW); label("R",R,NE); label("S",SS,N); label("M",M,S); label("G",G,W); label("H",H,NE);[/asy]

$SP: y = mx - 3m$, $RQ: y = mx-5m$, $PQ: y = -\frac{1}{m}x + \frac{7}{m}$, $SR: y = -\frac{1}{m}x + \frac{13}{m}$

Let $SP = RP = PQ = SR = a$, $\angle GAB = \angle HCD = \theta$, and the slope of $SP$ be $m$.

When the slope of $SP$ is $m$, the slope of $SR$ is $-\frac{1}{m}$, $\tan \theta = m$, $\cot \theta = -\frac{1}{m}$

$\sin \theta = \frac{GB}{AB} = \frac{a}{2}$, $\cos \theta = \frac{HC}{CD} = \frac{a}{6}$

As $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{a}{2}}{\frac{a}{6}} = 3$, $m = 3$

$SP: y = 3x - 9$, $RQ: y = 3x-15$, $PQ: y = -\frac{1}{3}x + \frac{7}{3}$, $SR: y = -\frac{1}{3}x + \frac{13}{3}$

$3x - 9 = -\frac{1}{3}x + \frac{13}{3}$, $x = 4$, $y = 3$, $S = (4, 3)$

$3x-15 = -\frac{1}{3}x + \frac{7}{3}$, $x = 5.2$, $y = 0.6$, $Q = (5.2, 0.6)$

$M = (4.6, 1.8)$, $4.6 + 1.8 = \boxed{\mathbf{(C)}\ 32/5}$

~isabelchen

Solution 7 (Pure Trig and Similarity)

[asy] unitsize(1 cm); pair P,Q,R,S,A,B,C,D,E,F,F1,F2,F3,M; P = (3.4,1.2); Q = (5.2,0.6); R = (5.8,2.4); S = (4,3); A = (3,0); B = (5,0); C = (7,0); D = (13,0); E = (3.2,0.6); F = (7.6,1.8); F1 = (3.2,0); F2 = (3.4,0); F3 = (5.8,0); M = (4.6,1.8); dot(P); dot(Q); dot(R); dot(S); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(F1); dot(F2); dot(F3); dot(M); draw(P--Q--R--S--cycle); draw(P--A); draw(Q--B); draw(R--D); draw(Q--C); draw(A--D); draw(B--E, dashed); draw(C--F, dashed); draw(E--F1, dashed); draw(P--F2, dashed); draw(R--F3, dashed); draw(P--R, dashed); label("$A$",A,W); label("$B$",B,SW); label("$C$",C,SW); label("$D$",D,SW); label("$P$",P,W); label("$Q$",Q,ENE); label("$R$",R,N); label("$S$",S,N); label("$E$",E,NW); label("$F$",F,NE); label("$F_1$",F1,SSW); label("$F_2$",F2,SE); label("$F_3$",F3,SW); label("$M$",M,NW); [/asy] Let $PQ=x$ and $\angle PCA=\theta.$ Draw the line $BE$ such that $E$ is on $AP$ and $BE\parallel PQ.$ Also, Draw the line $CF$ such that $F$ is on $DR$ and $CF\parallel RQ.$ Then $EB=FC=x$ and $\angle EBA=\angle FDC=\theta.$ Also, note that $AB=2$ and $CD=6.$ Hence: \[\cos(\theta)=\frac{x}{2},\sin(\theta)=\frac{x}{6}.\] Thus $\cos(\theta)=3\sin(\theta).$ Since $\theta<\frac{\pi}{2},$ $\sin(\theta)=\sqrt{1-\cos^2(\theta)},$ so $\cos(\theta)=3\sqrt{1-\cos^2(\theta)}.$ Hence, $\cos(\theta)=\frac{3}{\sqrt{10}}$ and $x=\frac{6}{\sqrt{10}}.$ Draw the perpendicular lines $EF_1\perp AD,PF_2\perp AD,RF_3\perp AD.$ Note that: \[F_1B=BE\cdot\cos(\theta)=\frac{6}{\sqrt{10}}\cdot\frac{3}{\sqrt{10}}=\frac{9}{5}.\] Hence: \[EF_1=\sqrt{EB^2-EF_1^2}=\sqrt{\frac{18}{5}-\frac{81}{25}}=\frac{3}{5}.\] Note that $\triangle EF_1B\sim\triangle PF_2C,$ so: \[\frac{PF_2}{EF_1}=\frac{F_2C}{F_1B}=\frac{AC}{AB}=2.\] Hence: \[PF_2=\frac{6}{5}, F_2C=\frac{18}{5}.\] So $P$ has coordinates: \[\left(7-\frac{18}{5},\frac{6}{5}\right)=\left(\frac{17}{5},\frac{6}{5}\right).\] Also note that $\triangle EF_1B\sim\triangle RF_3D,$ so: \[\frac{RF_3}{EF_1}=\frac{F_3D}{F_1B}=\frac{BD}{AB}=4.\] Hence: \[RF_3=\frac{12}{5}, F_3D=\frac{36}{5}.\] So $R$ has coordinates: \[\left(13-\frac{36}{5},\frac{12}{5}\right)=\left(\frac{29}{5},\frac{12}{5}\right).\] Hence, the center of square $PQRS,$ which is also the midpoint of $PR,$ has coordinates: \[\left(\frac{\frac{17}{5}+\frac{29}{5}}{2},\frac{\frac{6}{5}+\frac{12}{5}}{2}\right)=\left(\frac{23}{5},\frac{9}{5}\right).\] We thus see that the answer is: \[\frac{23}{5}+\frac{9}{5}=\boxed{\text{(C)}\frac{32}{5}}.\]

See Also

2012 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png