Difference between revisions of "2018 AMC 12A Problems/Problem 24"

m
(Solution 5 (Calculus))
 
(54 intermediate revisions by 6 users not shown)
Line 11: Line 11:
 
</math>
 
</math>
  
== Solution 1 (Answer Choices)==
+
== Solution 1 (Expected Values) ==
 +
The expected value of Alice's number is <math>\frac12\left(0+1\right)=\frac12,</math> and the expected value of Bob's number is <math>\frac12\left(\frac12+\frac23\right)=\frac{7}{12}.</math> To maximize her chance of winning, Carol should choose the midpoint between these two expected values. So, the answer is <math>\frac12\left(\frac12+\frac{7}{12}\right)=\boxed{\textbf{(B) }\frac{13}{24}}.</math>
 +
 
 +
Alternatively, once we recognize that the answer lies in the interval <math>\left(\frac12,\frac{7}{12}\right),</math> we should choose <math>\textbf{(B)}</math> since no other answer choices lie in this interval.
 +
 
 +
~Random_Guy ~MRENTHUSIASM
 +
 
 +
==Solution 2 (Piecewise Function)==
 
Let <math>a,b,</math> and <math>c</math> be the numbers that Alice, Bob, and Carol choose, respectively.
 
Let <math>a,b,</math> and <math>c</math> be the numbers that Alice, Bob, and Carol choose, respectively.
  
From the answer choices, we construct the following table:
+
Based on the value of <math>c,</math> we construct the following table:
 
<cmath>\begin{array}{c|c|c}
 
<cmath>\begin{array}{c|c|c}
 
& & \\ [-2ex]
 
& & \\ [-2ex]
\boldsymbol{c} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex]
+
\textbf{Case} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex]
 
\hline
 
\hline
 
& & \\ [-1.5ex]
 
& & \\ [-1.5ex]
\frac12 & 0<a<c \text{ and } c<b<\frac23 & \hspace{21.625mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}=\frac12 \\ [1.5ex]
+
0<c<\frac12 & 0<a<c \text{ and } \frac12<b<\frac23 & \hspace{1.25mm}\frac{c}{1}\cdot\frac{1/6}{1/6}=c \\ [1.5ex]
\frac{13}{24} & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \hspace{1.25mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=\frac{25}{48} \\ [1.5ex]
+
\frac12\leq c\leq\frac23 & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \hspace{1.25mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=-12c^2+13c-3 \\ [1.5ex]
\frac{7}{12} & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=\frac12 \\ [1.5ex]
+
\frac23<c<1 & c<a<1 \text{ and } \frac12<b<\frac23 & \hspace{4.375mm}\frac{1-c}{1}\cdot\frac{1/6}{1/6}=1-c \\ [1.5ex]
\frac58 & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \hspace{1.25mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=\frac{7}{16} \\ [1.5ex]
 
\frac23 & c<a<1 \text{ and } \frac12<b<c & \hspace{18.25mm}\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=\frac13 \\ [1.5ex]
 
 
\end{array}</cmath>
 
\end{array}</cmath>
Therefore, Carol should choose <math>\boxed{\textbf{(B) }\frac{13}{24}}</math> to maximize her chance of winning.
+
Let <math>P(c)</math> be Carol's probability of winning when she chooses <math>c.</math> We write <math>P(c)</math> as a piecewise function:
 +
<cmath>P(c) = \begin{cases}
 +
c & \mathrm{if} \ 0<c<\frac12 \\
 +
-12c^2+13c-3 & \mathrm{if} \ \frac12\leq c\leq\frac23 \\
 +
1-c & \mathrm{if} \ \frac23<c<1
 +
\end{cases}.</cmath>
 +
Note that <math>P(c)</math> is continuous in the interval <math>(0,1),</math> increasing in the interval <math>\left(0,\frac12\right),</math> increasing and then decreasing in the interval <math>\left(\frac12,\frac23\right),</math> and decreasing in the interval <math>\left(\frac23,1\right).</math> The graph of <math>y=P(c)</math> is shown below.
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
size(200);
 +
 
 +
real f(real x) { return x; }
 +
real g(real x) { return -12x^2+13x-3; }
 +
real h(real x) { return 1-x; }
 +
 
 +
draw((1/2,0)--(1/2,1.25),dashed);
 +
draw((2/3,0)--(2/3,1.25),dashed);
 +
draw(graph(f,0,1/2),red);
 +
draw(graph(g,1/2,2/3),red);
 +
draw(graph(h,2/3,1),red);
 +
 
 +
real xMin = -0.25;
 +
real xMax = 1.25;
 +
real yMin = -0.25;
 +
real yMax = 1.25;
 +
 
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("$c$",(xMax,0),(2,0));
 +
label("$y$",(0,yMax),(0,2));
 +
 
 +
pair A[];
 +
A[0] = (0,0);
 +
A[1] = (1/2,1/2);
 +
A[2] = (2/3,1/3);
 +
A[3] = (1,0);
 +
 
 +
dot(A[1],red+linewidth(3.5));
 +
dot(A[2],red+linewidth(3.5));
 +
 
 +
label("$0$",A[0],(-1.5,-1.5));
 +
label("$\frac12$",(1/2,0),(0,-1.5));
 +
label("$\frac23$",(2/3,0),(0,-1.5));
 +
label("$1$",A[3],(0,-1.5));
 +
label("$1$",(0,1),(-1.5,0));
 +
 
 +
draw((1/2,-0.02)--(1/2,0.02),linewidth(1));
 +
draw((2/3,-0.02)--(2/3,0.02),linewidth(1));
 +
draw((1,-0.02)--(1,0.02),linewidth(1));
 +
draw((-0.02,1)--(0.02,1),linewidth(1));
 +
</asy>
 +
Therefore, the maximum point of <math>P(c)</math> occurs in the interval <math>\left[\frac12,\frac23\right],</math> namely at <math>c=-\frac{13}{2\cdot(-12)}=\boxed{\textbf{(B) }\frac{13}{24}}.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
==Solution 2 (Piecewise Function)==
+
== Solution 3 (Answer Choices)==
 
Let <math>a,b,</math> and <math>c</math> be the numbers that Alice, Bob, and Carol choose, respectively.
 
Let <math>a,b,</math> and <math>c</math> be the numbers that Alice, Bob, and Carol choose, respectively.
  
Based on the value of <math>c,</math> we construct the following table:
+
From the answer choices, we construct the following table:
 
<cmath>\begin{array}{c|c|c}
 
<cmath>\begin{array}{c|c|c}
 
& & \\ [-2ex]
 
& & \\ [-2ex]
\textbf{Case} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex]
+
\boldsymbol{c} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex]
 
\hline
 
\hline
 
& & \\ [-1.5ex]
 
& & \\ [-1.5ex]
0<c<\frac12 & 0<a<c \text{ and } c<b<\frac23 & \hspace{12.5mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}=-6c^2+4c \\ [1.5ex]
+
\frac12 & 0<a<\frac12 \text{ and } \frac12<b<\frac23 & \hspace{23.375mm}\frac{1/2}{1}\cdot\frac{1/6}{1/6}=\frac12 \\ [1.5ex]
\frac12\leq c<\frac23 & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \hspace{1.25mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=-12c^2+13c-3 \\ [1.5ex]
+
\frac{13}{24} & \left(0<a<\frac{13}{24} \text{ and } \frac{13}{24}<b<\frac23\right) \text{ or } \left(\frac{13}{24}<a<1 \text{ and } \frac12<b<\frac{13}{24}\right) & \frac{13/24}{1}\cdot\frac{1/8}{1/6}+\frac{11/24}{1}\cdot\frac{1/24}{1/6}=\frac{25}{48} \\ [1.5ex]
\frac23\leq c<1 & c<a<1 \text{ and } \frac12<b<c & \hspace{15.75mm}\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=-6c^2+9c-3 \\ [1.5ex]
+
\frac{7}{12} & \left(0<a<\frac{7}{12} \text{ and } \frac{7}{12}<b<\frac23\right) \text{ or } \left(\frac{7}{12}<a<1 \text{ and } \frac12<b<\frac{7}{12}\right) & \frac{7/12}{1}\cdot\frac{1/12}{1/6}+\frac{5/12}{1}\cdot\frac{1/12}{1/6}=\frac12 \\ [1.5ex]
 +
\frac58 & \left(0<a<\frac58 \text{ and } \frac58<b<\frac23\right) \text{ or } \left(\frac58<a<1 \text{ and } \frac12<b<\frac58\right) & \hspace{5.625mm}\frac{5/8}{1}\cdot\frac{1/24}{1/6}+\frac{3/8}{1}\cdot\frac{1/8}{1/6}=\frac{7}{16} \\ [1.5ex]
 +
\frac23 & \frac23<a<1 \text{ and } \frac12<b<\frac23 & \hspace{23.25mm}\frac{1/3}{1}\cdot\frac{1/6}{1/6}=\frac13 \\ [1.5ex]
 
\end{array}</cmath>
 
\end{array}</cmath>
Let <math>P(c)</math> be Carol's probability of winning when she chooses <math>c.</math> We write <math>P(c)</math> as a piecewise function:
+
Therefore, Carol should choose <math>\boxed{\textbf{(B) }\frac{13}{24}}</math> to maximize her chance of winning.
 +
 
 +
~MRENTHUSIASM
 +
 
 +
== Solution 4 (Calculus) ==
  
== Solution 3 (5-second way) ==
+
Note that Carol's number must lie in the interval <math>\left[\frac{1}{2}, \frac{2}{3}\right]</math> because it never needs to be less than <math>\frac{1}{2}</math> in order to be less than Bob's number, and it never needs to be greater than <math>\frac{2}{3}</math> in order to be greater than Bob's number. Going past either value will only decrease the probability of being on the correct side of Alice's number.
  
The expected value of Alice's number is <math>\frac{1}{2}</math> and the expected value of Bob's number is <math>\frac{7}{12}</math>. To maximize her chance of winning, Carol would choose number exactly in between the two expected values, giving:<math>\frac{6+7}{12*2}=\frac{13}{24}</math>. This is <math>\boxed{\textbf{(B)}}</math>. (Random_Guy)
+
There are two cases of winning:  
  
Even faster, once you know it's between <math>\frac{1}{2}</math> and <math>\frac{7}{12},</math> the answer is <math>B</math> because no other option is in this interval.
+
Case 1: Alice chooses a number that is smaller than Carol's, and Bob chooses a number that is bigger.  
  
== Solution 4 ==
+
Case 2: Alice chooses a number that is bigger than Carol's, and Bob chooses a number that is smaller.
  
Let’s call Alice’s number a, Bob’s number b, and Carol’s number c. Then, in order to maximize her chance of choosing a number that is in between a and b, she should choose c = (a+b)/2.
+
Let Carol's number be <math>\frac{1}{2}+x</math>, where <math>x \in \left[0, \frac{1}{6}\right]</math>. The probability of Case 1 can be expressed as <math>\frac{\frac{1}{2} + x}{1}\cdot\frac{\frac{1}{6} - x}{\frac{1}{6}}=\left(\frac{1}{2} + x\right)\left(1 - 6x\right)</math>, and the probability of Case 2 can be expressed as <math>\frac{\frac{1}{2} - x}{1}\cdot\frac{x}{\frac{1}{6}}=\left(\frac{1}{2} - x\right)\left(6x\right)</math>.  
  
We need to find the average value of (a+b)/2 over the region [0, 1] x[1/2, 2/3] in the a-b plane.
+
Thus, the probability of Carol winning can be expressed as the sum of the probabilities of Cases 1 and 2: <math>P = \left(\frac{1}{2} + x\right)\left(1 - 6x\right) + \left(\frac{1}{2} - x\right)\left(6x\right)</math>, which simplifies to <math>P = \frac{1}{2} + x - 12x^2</math>. The maximum value of <math>P</math> is obtained through the value of <math>x</math> where the slope is <math>0</math>. We take the first derivative and get <math>1 - 24x</math>, which yields <math>0</math> at <math>x = \frac{1}{24}</math>. Hence, Carol should select <math>\frac{1}{2} + \frac{1}{24} = \boxed{\textbf{(B) }\frac{13}{24}}</math>.
  
We can set up a double integral with bounds 0 to 1 for the outer integral and 1/2 to 2/3 for the inner integral with an integrand of (a+b)/2. We need to divide our answer by 1/6, the area of the region of interest. This should yield 13/24, B.
+
Note that the same value of <math>x</math> can be obtained through the Vertex Formula, <math>x=-\frac{b}{2a}</math>, without using Calculus.
  
== Solution 5 ==
+
== Solution 5 (Calculus) ==
  
Have Carol pick a point <math>x</math> on the real line. The probability that Alice's number is below is thus <math>x</math>, and the probability that Alice's number is above is <math>1 - x</math>. Now, Carol must pick a point between <math>\frac{1}{2}</math> and <math>\frac{2}{3}</math>, exclusive.  If she does not, then it is impossible for Carol's point to be between both Alice and Bob's point. Now what is the probability that Bob's point is below Carol's? To make it simple, scale Bob's number to the normal number line by subtracting <math>\frac{1}{2}</math> and multiplying by <math>6</math>. So thus the chance Bob's number is below is <math>6(x - \frac{1}{2})</math> and above is <math>1 - 6(x-\frac{1}{2})</math>.
+
It suffices to find the average (expected) value of <math>C=\frac{\left(A+B\right)}{2}</math> over the intervals <math>A \in \left[0,1\right]</math> and <math>B \in \left[\frac{1}{2},\frac{2}{3}\right]</math>. We do this by finding <math>\int_0^1 \int_\frac{1}{2}^\frac{2}{3}\frac{\left(A+B\right)}{2}\,dB\,dA</math> and divide by the area of the interval we're integrating over, namely <math>{\left(1-0\right)\left(\frac{2}{3}-\frac{1}{2}\right)}=\frac{1}{6}</math>. <math>\int_0^1 \left[\frac{AB}{2}+\frac{B^2}{4}\right]_{B=\frac{1}{2}}^\frac{2}{3}\,dA = \left[\frac{A^2}{24}+\frac{7A}{144}\right]_{A=0}^1=\frac{13}{144}</math>. Dividing by <math>\frac{1}{6}</math> we get <math>\boxed{\textbf{(B) }\frac{13}{24}}</math>.
  
Now we want to maximixe the probability of (Alice number below <math>x</math>) AND (Bob number above <math>x</math>) + (Alice number above <math>x</math>) AND (Bob number below <math>x</math>).  This gives the formula <math>x(1 - 6(x-\frac{1}{2})) + (1 -x)6(x-\frac{1}{2})  = -3 + 13 x - 12 x^2</math>.
+
~Joeythetoey
Then proceed using the process of completing the square or averaging the roots to get that the maximum of this is <math>\frac{13}{24}</math>.
 
  
 
== Video Solution by Richard Rusczyk ==
 
== Video Solution by Richard Rusczyk ==

Latest revision as of 01:49, 10 October 2024

Problem

Alice, Bob, and Carol play a game in which each of them chooses a real number between $0$ and $1.$ The winner of the game is the one whose number is between the numbers chosen by the other two players. Alice announces that she will choose her number uniformly at random from all the numbers between $0$ and $1,$ and Bob announces that he will choose his number uniformly at random from all the numbers between $\tfrac{1}{2}$ and $\tfrac{2}{3}.$ Armed with this information, what number should Carol choose to maximize her chance of winning?

$\textbf{(A) }\frac{1}{2}\qquad \textbf{(B) }\frac{13}{24} \qquad \textbf{(C) }\frac{7}{12} \qquad \textbf{(D) }\frac{5}{8} \qquad \textbf{(E) }\frac{2}{3}\qquad$

Solution 1 (Expected Values)

The expected value of Alice's number is $\frac12\left(0+1\right)=\frac12,$ and the expected value of Bob's number is $\frac12\left(\frac12+\frac23\right)=\frac{7}{12}.$ To maximize her chance of winning, Carol should choose the midpoint between these two expected values. So, the answer is $\frac12\left(\frac12+\frac{7}{12}\right)=\boxed{\textbf{(B) }\frac{13}{24}}.$

Alternatively, once we recognize that the answer lies in the interval $\left(\frac12,\frac{7}{12}\right),$ we should choose $\textbf{(B)}$ since no other answer choices lie in this interval.

~Random_Guy ~MRENTHUSIASM

Solution 2 (Piecewise Function)

Let $a,b,$ and $c$ be the numbers that Alice, Bob, and Carol choose, respectively.

Based on the value of $c,$ we construct the following table: \[\begin{array}{c|c|c} & & \\ [-2ex] \textbf{Case} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex] \hline & & \\ [-1.5ex] 0<c<\frac12 & 0<a<c \text{ and } \frac12<b<\frac23 & \hspace{1.25mm}\frac{c}{1}\cdot\frac{1/6}{1/6}=c \\ [1.5ex] \frac12\leq c\leq\frac23 & \left(0<a<c \text{ and } c<b<\frac23\right) \text{ or } \left(c<a<1 \text{ and } \frac12<b<c\right) & \hspace{1.25mm}\frac{c}{1}\cdot\frac{2/3-c}{1/6}+\frac{1-c}{1}\cdot\frac{c-1/2}{1/6}=-12c^2+13c-3 \\ [1.5ex] \frac23<c<1 & c<a<1 \text{ and } \frac12<b<\frac23 & \hspace{4.375mm}\frac{1-c}{1}\cdot\frac{1/6}{1/6}=1-c \\ [1.5ex] \end{array}\] Let $P(c)$ be Carol's probability of winning when she chooses $c.$ We write $P(c)$ as a piecewise function: \[P(c) = \begin{cases} c & \mathrm{if} \ 0<c<\frac12 \\ -12c^2+13c-3 & \mathrm{if} \ \frac12\leq c\leq\frac23 \\ 1-c & \mathrm{if} \ \frac23<c<1 \end{cases}.\] Note that $P(c)$ is continuous in the interval $(0,1),$ increasing in the interval $\left(0,\frac12\right),$ increasing and then decreasing in the interval $\left(\frac12,\frac23\right),$ and decreasing in the interval $\left(\frac23,1\right).$ The graph of $y=P(c)$ is shown below. [asy] /* Made by MRENTHUSIASM */ size(200);   real f(real x) { return x; }  real g(real x) { return -12x^2+13x-3; } real h(real x) { return 1-x; }  draw((1/2,0)--(1/2,1.25),dashed); draw((2/3,0)--(2/3,1.25),dashed); draw(graph(f,0,1/2),red); draw(graph(g,1/2,2/3),red); draw(graph(h,2/3,1),red);  real xMin = -0.25; real xMax = 1.25; real yMin = -0.25; real yMax = 1.25;  draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("$c$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2));  pair A[]; A[0] = (0,0); A[1] = (1/2,1/2); A[2] = (2/3,1/3); A[3] = (1,0);  dot(A[1],red+linewidth(3.5));  dot(A[2],red+linewidth(3.5));   label("$0$",A[0],(-1.5,-1.5)); label("$\frac12$",(1/2,0),(0,-1.5)); label("$\frac23$",(2/3,0),(0,-1.5)); label("$1$",A[3],(0,-1.5)); label("$1$",(0,1),(-1.5,0));  draw((1/2,-0.02)--(1/2,0.02),linewidth(1)); draw((2/3,-0.02)--(2/3,0.02),linewidth(1)); draw((1,-0.02)--(1,0.02),linewidth(1)); draw((-0.02,1)--(0.02,1),linewidth(1)); [/asy] Therefore, the maximum point of $P(c)$ occurs in the interval $\left[\frac12,\frac23\right],$ namely at $c=-\frac{13}{2\cdot(-12)}=\boxed{\textbf{(B) }\frac{13}{24}}.$

~MRENTHUSIASM

Solution 3 (Answer Choices)

Let $a,b,$ and $c$ be the numbers that Alice, Bob, and Carol choose, respectively.

From the answer choices, we construct the following table: \[\begin{array}{c|c|c} & & \\ [-2ex] \boldsymbol{c} & \textbf{Conditions for }\boldsymbol{a}\textbf{ and }\boldsymbol{b} & \textbf{Carol's Probability of Winning} \\ [0.5ex] \hline & & \\ [-1.5ex] \frac12 & 0<a<\frac12 \text{ and } \frac12<b<\frac23 & \hspace{23.375mm}\frac{1/2}{1}\cdot\frac{1/6}{1/6}=\frac12 \\ [1.5ex] \frac{13}{24} & \left(0<a<\frac{13}{24} \text{ and } \frac{13}{24}<b<\frac23\right) \text{ or } \left(\frac{13}{24}<a<1 \text{ and } \frac12<b<\frac{13}{24}\right) & \frac{13/24}{1}\cdot\frac{1/8}{1/6}+\frac{11/24}{1}\cdot\frac{1/24}{1/6}=\frac{25}{48} \\ [1.5ex] \frac{7}{12} & \left(0<a<\frac{7}{12} \text{ and } \frac{7}{12}<b<\frac23\right) \text{ or } \left(\frac{7}{12}<a<1 \text{ and } \frac12<b<\frac{7}{12}\right) & \frac{7/12}{1}\cdot\frac{1/12}{1/6}+\frac{5/12}{1}\cdot\frac{1/12}{1/6}=\frac12 \\ [1.5ex] \frac58 & \left(0<a<\frac58 \text{ and } \frac58<b<\frac23\right) \text{ or } \left(\frac58<a<1 \text{ and } \frac12<b<\frac58\right) & \hspace{5.625mm}\frac{5/8}{1}\cdot\frac{1/24}{1/6}+\frac{3/8}{1}\cdot\frac{1/8}{1/6}=\frac{7}{16} \\ [1.5ex] \frac23 & \frac23<a<1 \text{ and } \frac12<b<\frac23 & \hspace{23.25mm}\frac{1/3}{1}\cdot\frac{1/6}{1/6}=\frac13 \\ [1.5ex] \end{array}\] Therefore, Carol should choose $\boxed{\textbf{(B) }\frac{13}{24}}$ to maximize her chance of winning.

~MRENTHUSIASM

Solution 4 (Calculus)

Note that Carol's number must lie in the interval $\left[\frac{1}{2}, \frac{2}{3}\right]$ because it never needs to be less than $\frac{1}{2}$ in order to be less than Bob's number, and it never needs to be greater than $\frac{2}{3}$ in order to be greater than Bob's number. Going past either value will only decrease the probability of being on the correct side of Alice's number.

There are two cases of winning:

Case 1: Alice chooses a number that is smaller than Carol's, and Bob chooses a number that is bigger.

Case 2: Alice chooses a number that is bigger than Carol's, and Bob chooses a number that is smaller.

Let Carol's number be $\frac{1}{2}+x$, where $x \in \left[0, \frac{1}{6}\right]$. The probability of Case 1 can be expressed as $\frac{\frac{1}{2} + x}{1}\cdot\frac{\frac{1}{6} - x}{\frac{1}{6}}=\left(\frac{1}{2} + x\right)\left(1 - 6x\right)$, and the probability of Case 2 can be expressed as $\frac{\frac{1}{2} - x}{1}\cdot\frac{x}{\frac{1}{6}}=\left(\frac{1}{2} - x\right)\left(6x\right)$.

Thus, the probability of Carol winning can be expressed as the sum of the probabilities of Cases 1 and 2: $P = \left(\frac{1}{2} + x\right)\left(1 - 6x\right) + \left(\frac{1}{2} - x\right)\left(6x\right)$, which simplifies to $P = \frac{1}{2} + x - 12x^2$. The maximum value of $P$ is obtained through the value of $x$ where the slope is $0$. We take the first derivative and get $1 - 24x$, which yields $0$ at $x = \frac{1}{24}$. Hence, Carol should select $\frac{1}{2} + \frac{1}{24} = \boxed{\textbf{(B) }\frac{13}{24}}$.

Note that the same value of $x$ can be obtained through the Vertex Formula, $x=-\frac{b}{2a}$, without using Calculus.

Solution 5 (Calculus)

It suffices to find the average (expected) value of $C=\frac{\left(A+B\right)}{2}$ over the intervals $A \in \left[0,1\right]$ and $B \in \left[\frac{1}{2},\frac{2}{3}\right]$. We do this by finding $\int_0^1 \int_\frac{1}{2}^\frac{2}{3}\frac{\left(A+B\right)}{2}\,dB\,dA$ and divide by the area of the interval we're integrating over, namely ${\left(1-0\right)\left(\frac{2}{3}-\frac{1}{2}\right)}=\frac{1}{6}$. $\int_0^1 \left[\frac{AB}{2}+\frac{B^2}{4}\right]_{B=\frac{1}{2}}^\frac{2}{3}\,dA = \left[\frac{A^2}{24}+\frac{7A}{144}\right]_{A=0}^1=\frac{13}{144}$. Dividing by $\frac{1}{6}$ we get $\boxed{\textbf{(B) }\frac{13}{24}}$.

~Joeythetoey

Video Solution by Richard Rusczyk

https://artofproblemsolving.com/videos/amc/2018amc12a/474

~ dolphin7

Video Solution (Meta-Solving Technique)

https://youtu.be/GmUWIXXf_uk?t=926

~ pi_is_3.14

See Also

2018 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png