Difference between revisions of "Sophie Germain Identity"

(create)
 
Line 5: Line 5:
 
The proof involves [[completing the square]] and then [[difference of squares]].  
 
The proof involves [[completing the square]] and then [[difference of squares]].  
  
<div style="text-align:center;"><math>\displaystyle a^4 + 4b^4 = a^4 + 4a^2b^2 + 4b^4 - 4a^4b^4</math><br /><math>= (a^2 + 2b^2)^2 - 4a^4b^4</math><br /><math>\displaystyle = (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab)</math></div>
+
<div style="text-align:center;"><math>a^4 + 4b^4 = a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2</math><br /><math>= (a^2 + 2b^2)^2 - 4a^2b^2</math><br /><math>= (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab)</math></div>
  
 
== Problems ==
 
== Problems ==

Revision as of 17:05, 4 February 2008

The Sophie Germain Identity, credited to Marie-Sophie Germain, states that:

$a^4 + 4b^4 = (a^2 + 2b^2 + 2ab)(a^2 + 2b^2 - 2ab)$

The proof involves completing the square and then difference of squares.

$a^4 + 4b^4 = a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2$
$= (a^2 + 2b^2)^2 - 4a^2b^2$
$= (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab)$

Problems

Introductory

Intermediate