Difference between revisions of "2018 AMC 10A Problems"

(See also)
m (See also)
 
(63 intermediate revisions by 32 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2018|ab=A}}
 
==Problem 1==
 
==Problem 1==
 
What is the value of <cmath>\left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1?</cmath><math>\textbf{(A) } \frac58 \qquad \textbf{(B) }\frac{11}7 \qquad \textbf{(C) } \frac85 \qquad \textbf{(D) } \frac{18}{11} \qquad \textbf{(E) } \frac{15}8</math>
 
What is the value of <cmath>\left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1?</cmath><math>\textbf{(A) } \frac58 \qquad \textbf{(B) }\frac{11}7 \qquad \textbf{(C) } \frac85 \qquad \textbf{(D) } \frac{18}{11} \qquad \textbf{(E) } \frac{15}8</math>
 +
 +
[[2018 AMC 10A Problems/Problem 1|Solution]]
 +
 +
==Problem 2==
 +
Liliane has <math>50\%</math> more soda than Jacqueline, and Alice has <math>25\%</math> more soda than Jacqueline. What is the relationship between the amounts of soda that Liliane and Alice have?
 +
 +
<math>\textbf{(A)}</math>  Liliane has <math>20\%</math> more soda than Alice.
 +
 +
<math>\textbf{(B)}</math>  Liliane has <math>25\%</math> more soda than Alice.
 +
 +
<math>\textbf{(C)}</math>  Liliane has <math>45\%</math> more soda than Alice.
 +
 +
<math>\textbf{(D)}</math>  Liliane has <math>75\%</math> more soda than Alice.
 +
 +
<math>\textbf{(E)}</math>  Liliane has <math>100\%</math> more soda than Alice.
 +
 +
[[2018 AMC 10A Problems/Problem 2|Solution]]
 +
 +
== Problem 3==
 +
 +
A unit of blood expires after <math>10!=10\cdot 9 \cdot 8 \cdots 1</math> seconds. Yasin donates a unit of blood at noon of January 1. On what day does his unit of blood expire?
 +
 +
<math>\textbf{(A) }\text{January 2}\qquad\textbf{(B) }\text{January 12}\qquad\textbf{(C) }\text{January 22}\qquad\textbf{(D) }\text{February 11}\qquad\textbf{(E) }\text{February 12}</math>
 +
 +
[[2018 AMC 10A Problems/Problem 3|Solution]]
 +
 +
==Problem 4==
 +
How many ways can a student schedule <math>3</math> mathematics courses -- algebra, geometry, and number theory -- in a <math>6</math>-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other <math>3</math> periods is of no concern here.)
 +
 +
<math>\textbf{(A) }3\qquad\textbf{(B) }6\qquad\textbf{(C) }12\qquad\textbf{(D) }18\qquad\textbf{(E) }24</math>
 +
 +
[[2018 AMC 10A Problems/Problem 4|Solution]]
 +
 +
==Problem 5==
 +
Alice, Bob, and Charlie were on a hike and were wondering how far away the nearest town was. When Alice said, "We are at least <math>6</math> miles away," Bob replied, "We are at most <math>5</math> miles away." Charlie then remarked, "Actually the nearest town is at most <math>4</math> miles away." It turned out that none of the three statements were true. Let <math>d</math> be the distance in miles to the nearest town. Which of the following intervals is the set of all possible values of <math>d</math>?
 +
 +
<math>\textbf{(A) }  (0,4)  \qquad        \textbf{(B) }  (4,5)  \qquad    \textbf{(C) }  (4,6)  \qquad  \textbf{(D) }  (5,6)  \qquad  \textbf{(E) }  (5,\infty) </math>
 +
 +
[[2018 AMC 10A Problems/Problem 5|Solution]]
 +
 +
==Problem 6==
 +
Sangho uploaded a video to a website where viewers can vote that they like or dislike a video. Each video begins with a score of <math>0</math>, and the score increases by <math>1</math> for each like vote and decreases by <math>1</math> for each dislike vote. At one point Sangho saw that his video had a score of <math>90</math>, and that <math>65\%</math> of the votes cast on his video were like votes. How many votes had been cast on Sangho's video at that point?
 +
 +
<math>\textbf{(A) }  200  \qquad        \textbf{(B) }  300  \qquad    \textbf{(C) }  400  \qquad  \textbf{(D) }  500  \qquad  \textbf{(E) }  600 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 6|Solution]]
 +
 +
==Problem 7==
 +
For how many (not necessarily positive) integer values of <math>n</math> is the value of <math>4000\cdot \left(\tfrac{2}{5}\right)^n</math> an integer?
 +
 +
<math>
 +
\textbf{(A) }3 \qquad
 +
\textbf{(B) }4 \qquad
 +
\textbf{(C) }6 \qquad
 +
\textbf{(D) }8 \qquad
 +
\textbf{(E) }9 \qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 7|Solution]]
 +
 +
==Problem 8==
 +
Joe has a collection of <math>23</math> coins, consisting of <math>5</math>-cent coins, <math>10</math>-cent coins, and <math>25</math>-cent coins. He has <math>3</math> more <math>10</math>-cent coins than <math>5</math>-cent coins, and the total value of his collection is <math>320</math> cents. How many more <math>25</math>-cent coins does Joe have than <math>5</math>-cent coins?
 +
 +
<math>\textbf{(A) }  0  \qquad        \textbf{(B) }  1  \qquad    \textbf{(C) }  2  \qquad  \textbf{(D) }  3  \qquad  \textbf{(E) }  4 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 8|Solution]]
 +
 +
==Problem 9==
 +
All of the triangles in the diagram below are similar to isosceles triangle <math>ABC</math>, in which <math>AB=AC</math>. Each of the <math>7</math> smallest triangles has area <math>1,</math> and <math>\triangle ABC</math> has area <math>40</math>. What is the area of trapezoid <math>DBCE</math>?
 +
 +
<asy>
 +
unitsize(5);
 +
dot((0,0));
 +
dot((60,0));
 +
dot((50,10));
 +
dot((10,10));
 +
dot((30,30));
 +
draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0));
 +
draw((10,10)--(50,10));
 +
label("$B$",(0,0),SW);
 +
label("$C$",(60,0),SE);
 +
label("$E$",(50,10),E);
 +
label("$D$",(10,10),W);
 +
label("$A$",(30,30),N);
 +
draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10));
 +
draw((15,15)--(45,15));
 +
</asy>
 +
 +
<math>\textbf{(A) }  16  \qquad        \textbf{(B) }  18  \qquad    \textbf{(C) }  20  \qquad  \textbf{(D) }  22 \qquad  \textbf{(E) }  24 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 9|Solution]]
 +
 +
==Problem 10==
 +
Suppose that real number <math>x</math> satisfies <cmath>\sqrt{49-x^2}-\sqrt{25-x^2}=3.</cmath> What is the value of <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>?
 +
 +
<math>
 +
\textbf{(A) }8 \qquad
 +
\textbf{(B) }\sqrt{33}+8\qquad
 +
\textbf{(C) }9 \qquad
 +
\textbf{(D) }2\sqrt{10}+4 \qquad
 +
\textbf{(E) }12 \qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 10|Solution]]
 +
 +
==Problem 11==
 +
When <math>7</math> fair standard <math>6</math>-sided dice are thrown, the probability that the sum of the numbers on the top faces is <math>10</math> can be written as <cmath>\frac{n}{6^{7}},</cmath> where <math>n</math> is a positive integer. What is <math>n</math>?
 +
 +
<math>
 +
\textbf{(A) }42\qquad
 +
\textbf{(B) }49\qquad
 +
\textbf{(C) }56\qquad
 +
\textbf{(D) }63\qquad
 +
\textbf{(E) }84\qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 11|Solution]]
 +
 +
==Problem 12==
 +
How many ordered pairs of real numbers <math>(x,y)</math> satisfy the following system of equations?
 +
<cmath>\begin{align*}
 +
x+3y&=3 \\
 +
\big||x|-|y|\big|&=1
 +
\end{align*}</cmath>
 +
<math>\textbf{(A) } 1 \qquad
 +
\textbf{(B) } 2 \qquad
 +
\textbf{(C) } 3 \qquad
 +
\textbf{(D) } 4 \qquad
 +
\textbf{(E) } 8 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 12|Solution]]
 +
 +
==Problem 13==
 +
A paper triangle with sides of lengths <math>3,4,</math> and <math>5</math> inches, as shown, is folded so that point <math>A</math> falls on point <math>B</math>. What is the length in inches of the crease?
 +
<asy>
 +
draw((0,0)--(4,0)--(4,3)--(0,0));
 +
label("$A$", (0,0), SW);
 +
label("$B$", (4,3), NE);
 +
label("$C$", (4,0), SE);
 +
label("$4$", (2,0), S);
 +
label("$3$", (4,1.5), E);
 +
label("$5$", (2,1.5), NW);
 +
fill(origin--(0,0)--(4,3)--(4,0)--cycle, gray);
 +
</asy>
 +
<math>\textbf{(A) }  1+\frac12 \sqrt2  \qquad        \textbf{(B) }  \sqrt3  \qquad    \textbf{(C) }  \frac74  \qquad  \textbf{(D) }  \frac{15}{8} \qquad  \textbf{(E) }  2 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 13|Solution]]
 +
 +
==Problem 14==
 +
What is the greatest integer less than or equal to <cmath>\frac{3^{100}+2^{100}}{3^{96}+2^{96}}?</cmath>
 +
 +
<math>
 +
\textbf{(A) }80\qquad
 +
\textbf{(B) }81 \qquad
 +
\textbf{(C) }96 \qquad
 +
\textbf{(D) }97 \qquad
 +
\textbf{(E) }625\qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 14|Solution]]
 +
 +
==Problem 15==
 +
Two circles of radius <math>5</math> are externally tangent to each other and are internally tangent to a circle of radius <math>13</math> at points  <math>A</math> and <math>B</math>, as shown in the diagram. The distance <math>AB</math> can be written in the form <math>\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. What is <math>m+n</math>?
 +
 +
<asy>
 +
draw(circle((0,0),13));
 +
draw(circle((5,-6.2),5));
 +
draw(circle((-5,-6.2),5));
 +
label("$B$", (9.5,-9.5), S);
 +
label("$A$", (-9.5,-9.5), S);
 +
</asy>
 +
 +
<math>\textbf{(A) }  21  \qquad    \textbf{(B) }  29  \qquad    \textbf{(C) }  58  \qquad  \textbf{(D) } 69 \qquad  \textbf{(E) }  93 </math>
 +
 +
[[2018 AMC 10A Problems/Problem 15|Solution]]
 +
 +
==Problem 16==
 +
Right triangle <math>ABC</math> has leg lengths <math>AB=20</math> and <math>BC=21</math>. Including <math>\overline{AB}</math> and <math>\overline{BC}</math>, how many line segments with integer length can be drawn from vertex <math>B</math> to a point on hypotenuse <math>\overline{AC}</math>?
 +
 +
<math>
 +
\textbf{(A) }5 \qquad
 +
\textbf{(B) }8 \qquad
 +
\textbf{(C) }12 \qquad
 +
\textbf{(D) }13 \qquad
 +
\textbf{(E) }15 \qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 16|Solution]]
 +
 +
==Problem 17==
 +
Let <math>S</math> be a set of <math>6</math> integers taken from <math>\{1,2,\dots,12\}</math> with the property that if <math>a</math> and <math>b</math> are elements of <math>S</math> with <math>a<b</math>, then <math>b</math> is not a multiple of <math>a</math>. What is the least possible value of an element in <math>S</math>?
 +
 +
<math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 7</math>
 +
 +
[[2018 AMC 10A Problems/Problem 17|Solution]]
 +
 +
==Problem 18==
 +
How many nonnegative integers can be written in the form <cmath>a_7\cdot3^7+a_6\cdot3^6+a_5\cdot3^5+a_4\cdot3^4+a_3\cdot3^3+a_2\cdot3^2+a_1\cdot3^1+a_0\cdot3^0,</cmath>
 +
where <math>a_i\in \{-1,0,1\}</math> for <math>0\le i \le 7</math>?
 +
 +
<math>\textbf{(A) } 512 \qquad
 +
\textbf{(B) } 729 \qquad
 +
\textbf{(C) } 1094 \qquad
 +
\textbf{(D) } 3281 \qquad
 +
\textbf{(E) } 59,048
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 18|Solution]]
 +
 +
==Problem 19==
 +
A number <math>m</math> is randomly selected from the set <math>\{11,13,15,17,19\}</math>, and a number <math>n</math> is randomly selected from <math>\{1999,2000,2001,\ldots,2018\}</math>. What is the probability that <math>m^n</math> has a units digit of <math>1</math>?
 +
 +
<math>\textbf{(A) }  \frac{1}{5}  \qquad        \textbf{(B) }  \frac{1}{4}  \qquad    \textbf{(C) }  \frac{3}{10}  \qquad  \textbf{(D) } \frac{7}{20} \qquad  \textbf{(E) }  \frac{2}{5} </math>
 +
 +
[[2018 AMC 10A Problems/Problem 19|Solution]]
 +
 +
==Problem 20==
 +
A scanning code consists of a <math>7 \times 7</math> grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of each color in this grid of <math>49</math> squares. A scanning code is called <math>\textit{symmetric}</math> if its look does not change when the entire square is rotated by a multiple of <math>90 ^{\circ}</math> counterclockwise around its center, nor when it is reflected across a line joining opposite corners or a line joining midpoints of opposite sides. What is the total number of possible symmetric scanning codes?
 +
 +
<math>\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}</math>
 +
 +
[[2018 AMC 10A Problems/Problem 20|Solution]]
 +
 +
==Problem 21==
 +
Which of the following describes the set of values of <math>a</math> for which the curves <math>x^2+y^2=a^2</math> and <math>y=x^2-a</math> in the real <math>xy</math>-plane intersect at exactly <math>3</math> points?
 +
 +
<math>
 +
\textbf{(A) }a=\frac14 \qquad
 +
\textbf{(B) }\frac14 < a < \frac12 \qquad
 +
\textbf{(C) }a>\frac14 \qquad
 +
\textbf{(D) }a=\frac12 \qquad
 +
\textbf{(E) }a>\frac12 \qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 21|Solution]]
 +
 +
==Problem 22==
 +
Let <math>a, b, c,</math> and <math>d</math> be positive integers such that <math>\gcd(a, b)=24</math>, <math>\gcd(b, c)=36</math>, <math>\gcd(c, d)=54</math>, and <math>70<\gcd(d, a)<100</math>. Which of the following must be a divisor of <math>a</math>?
 +
 +
<math>\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}</math>
 +
 +
[[2018 AMC 10A Problems/Problem 22|Solution]]
 +
 +
==Problem 23==
 +
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths <math>3</math> and <math>4</math> units. In the corner where those sides meet at a right angle, he leaves a small unplanted square <math>S</math> so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from <math>S</math> to the hypotenuse is <math>2</math> units. What fraction of the field is planted?
 +
 +
<asy>
 +
/* Edited by MRENTHUSIASM */
 +
size(160);
 +
pair A, B, C, D, F;
 +
A = origin;
 +
B = (4,0);
 +
C = (0,3);
 +
D = (2/7,2/7);
 +
F = foot(D,B,C);
 +
fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray);
 +
draw(A--B--C--cycle);
 +
draw((2/7,0)--D--(0,2/7));
 +
label("$4$", midpoint(A--B), N);
 +
label("$3$", midpoint(A--C), E);
 +
label("$2$", midpoint(D--F), SE);
 +
label("$S$", midpoint(A--D));
 +
draw(D--F, dashed);
 +
</asy>
 +
 +
<math>\textbf{(A) }  \frac{25}{27}  \qquad        \textbf{(B) }  \frac{26}{27}  \qquad    \textbf{(C) }  \frac{73}{75}  \qquad  \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }  \frac{74}{75} </math>
 +
 +
[[2018 AMC 10A Problems/Problem 23|Solution]]
 +
 +
==Problem 24==
 +
Triangle <math>ABC</math> with <math>AB=50</math> and <math>AC=10</math> has area <math>120</math>. Let <math>D</math> be the midpoint of <math>\overline{AB}</math>, and let <math>E</math> be the midpoint of <math>\overline{AC}</math>. The angle bisector of <math>\angle BAC</math> intersects <math>\overline{DE}</math> and <math>\overline{BC}</math> at <math>F</math> and <math>G</math>, respectively. What is the area of quadrilateral <math>FDBG</math>?
 +
 +
<math>
 +
\textbf{(A) }60 \qquad
 +
\textbf{(B) }65 \qquad
 +
\textbf{(C) }70 \qquad
 +
\textbf{(D) }75 \qquad
 +
\textbf{(E) }80 \qquad
 +
</math>
 +
 +
[[2018 AMC 10A Problems/Problem 24|Solution]]
 +
 +
==Problem 25==
 +
For a positive integer <math>n</math> and nonzero digits <math>a</math>, <math>b</math>, and <math>c</math>, let <math>A_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>a</math>; let <math>B_n</math> be the <math>n</math>-digit integer each of whose digits is equal to <math>b</math>, and let <math>C_n</math> be the <math>2n</math>-digit (not <math>n</math>-digit) integer each of whose digits is equal to <math>c</math>. What is the greatest possible value of <math>a + b + c</math> for which there are at least two values of <math>n</math> such that <math>C_n - B_n = A_n^2</math>?
 +
 +
<math>\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20</math>
 +
 +
[[2018 AMC 10A Problems/Problem 25|Solution]]
 +
 
==See also==
 
==See also==
{{AMC10 box|year=2018|ab=A|before=[[2017 AMC 10B]]|after=[[2018 AMC 10B]]}}
+
{{AMC10 box|year=2018|ab=A|before=[[2017 AMC 10B Problems]]|after=[[2018 AMC 10B Problems]]}}
 
* [[AMC 10]]
 
* [[AMC 10]]
 
* [[AMC 10 Problems and Solutions]]
 
* [[AMC 10 Problems and Solutions]]

Latest revision as of 00:47, 9 October 2024

2018 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

What is the value of \[\left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1?\]$\textbf{(A) } \frac58 \qquad \textbf{(B) }\frac{11}7 \qquad \textbf{(C) } \frac85 \qquad \textbf{(D) } \frac{18}{11} \qquad \textbf{(E) } \frac{15}8$

Solution

Problem 2

Liliane has $50\%$ more soda than Jacqueline, and Alice has $25\%$ more soda than Jacqueline. What is the relationship between the amounts of soda that Liliane and Alice have?

$\textbf{(A)}$ Liliane has $20\%$ more soda than Alice.

$\textbf{(B)}$ Liliane has $25\%$ more soda than Alice.

$\textbf{(C)}$ Liliane has $45\%$ more soda than Alice.

$\textbf{(D)}$ Liliane has $75\%$ more soda than Alice.

$\textbf{(E)}$ Liliane has $100\%$ more soda than Alice.

Solution

Problem 3

A unit of blood expires after $10!=10\cdot 9 \cdot 8 \cdots 1$ seconds. Yasin donates a unit of blood at noon of January 1. On what day does his unit of blood expire?

$\textbf{(A) }\text{January 2}\qquad\textbf{(B) }\text{January 12}\qquad\textbf{(C) }\text{January 22}\qquad\textbf{(D) }\text{February 11}\qquad\textbf{(E) }\text{February 12}$

Solution

Problem 4

How many ways can a student schedule $3$ mathematics courses -- algebra, geometry, and number theory -- in a $6$-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other $3$ periods is of no concern here.)

$\textbf{(A) }3\qquad\textbf{(B) }6\qquad\textbf{(C) }12\qquad\textbf{(D) }18\qquad\textbf{(E) }24$

Solution

Problem 5

Alice, Bob, and Charlie were on a hike and were wondering how far away the nearest town was. When Alice said, "We are at least $6$ miles away," Bob replied, "We are at most $5$ miles away." Charlie then remarked, "Actually the nearest town is at most $4$ miles away." It turned out that none of the three statements were true. Let $d$ be the distance in miles to the nearest town. Which of the following intervals is the set of all possible values of $d$?

$\textbf{(A) }   (0,4)   \qquad        \textbf{(B) }   (4,5)   \qquad    \textbf{(C) }   (4,6)   \qquad   \textbf{(D) }  (5,6)  \qquad  \textbf{(E) }   (5,\infty)$

Solution

Problem 6

Sangho uploaded a video to a website where viewers can vote that they like or dislike a video. Each video begins with a score of $0$, and the score increases by $1$ for each like vote and decreases by $1$ for each dislike vote. At one point Sangho saw that his video had a score of $90$, and that $65\%$ of the votes cast on his video were like votes. How many votes had been cast on Sangho's video at that point?

$\textbf{(A) }   200   \qquad        \textbf{(B) }   300   \qquad    \textbf{(C) }   400   \qquad   \textbf{(D) }  500  \qquad  \textbf{(E) }   600$

Solution

Problem 7

For how many (not necessarily positive) integer values of $n$ is the value of $4000\cdot \left(\tfrac{2}{5}\right)^n$ an integer?

$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }6 \qquad \textbf{(D) }8 \qquad \textbf{(E) }9 \qquad$

Solution

Problem 8

Joe has a collection of $23$ coins, consisting of $5$-cent coins, $10$-cent coins, and $25$-cent coins. He has $3$ more $10$-cent coins than $5$-cent coins, and the total value of his collection is $320$ cents. How many more $25$-cent coins does Joe have than $5$-cent coins?

$\textbf{(A) }   0   \qquad        \textbf{(B) }   1   \qquad    \textbf{(C) }   2   \qquad   \textbf{(D) }  3  \qquad  \textbf{(E) }   4$

Solution

Problem 9

All of the triangles in the diagram below are similar to isosceles triangle $ABC$, in which $AB=AC$. Each of the $7$ smallest triangles has area $1,$ and $\triangle ABC$ has area $40$. What is the area of trapezoid $DBCE$?

[asy] unitsize(5); dot((0,0)); dot((60,0)); dot((50,10)); dot((10,10)); dot((30,30)); draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0)); draw((10,10)--(50,10)); label("$B$",(0,0),SW); label("$C$",(60,0),SE); label("$E$",(50,10),E); label("$D$",(10,10),W); label("$A$",(30,30),N); draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10)); draw((15,15)--(45,15)); [/asy]

$\textbf{(A) }   16   \qquad        \textbf{(B) }   18   \qquad    \textbf{(C) }   20   \qquad   \textbf{(D) }  22 \qquad  \textbf{(E) }   24$

Solution

Problem 10

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3.\] What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8 \qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9 \qquad \textbf{(D) }2\sqrt{10}+4 \qquad \textbf{(E) }12 \qquad$

Solution

Problem 11

When $7$ fair standard $6$-sided dice are thrown, the probability that the sum of the numbers on the top faces is $10$ can be written as \[\frac{n}{6^{7}},\] where $n$ is a positive integer. What is $n$?

$\textbf{(A) }42\qquad \textbf{(B) }49\qquad \textbf{(C) }56\qquad \textbf{(D) }63\qquad \textbf{(E) }84\qquad$

Solution

Problem 12

How many ordered pairs of real numbers $(x,y)$ satisfy the following system of equations? \begin{align*} x+3y&=3 \\ \big||x|-|y|\big|&=1 \end{align*} $\textbf{(A) } 1 \qquad  \textbf{(B) } 2 \qquad  \textbf{(C) } 3 \qquad  \textbf{(D) } 4 \qquad  \textbf{(E) } 8$

Solution

Problem 13

A paper triangle with sides of lengths $3,4,$ and $5$ inches, as shown, is folded so that point $A$ falls on point $B$. What is the length in inches of the crease? [asy] draw((0,0)--(4,0)--(4,3)--(0,0)); label("$A$", (0,0), SW); label("$B$", (4,3), NE); label("$C$", (4,0), SE); label("$4$", (2,0), S); label("$3$", (4,1.5), E); label("$5$", (2,1.5), NW); fill(origin--(0,0)--(4,3)--(4,0)--cycle, gray); [/asy] $\textbf{(A) }   1+\frac12 \sqrt2   \qquad        \textbf{(B) }   \sqrt3   \qquad    \textbf{(C) }   \frac74   \qquad   \textbf{(D) }  \frac{15}{8} \qquad  \textbf{(E) }   2$

Solution

Problem 14

What is the greatest integer less than or equal to \[\frac{3^{100}+2^{100}}{3^{96}+2^{96}}?\]

$\textbf{(A) }80\qquad \textbf{(B) }81 \qquad \textbf{(C) }96 \qquad \textbf{(D) }97 \qquad \textbf{(E) }625\qquad$

Solution

Problem 15

Two circles of radius $5$ are externally tangent to each other and are internally tangent to a circle of radius $13$ at points $A$ and $B$, as shown in the diagram. The distance $AB$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

[asy] draw(circle((0,0),13)); draw(circle((5,-6.2),5)); draw(circle((-5,-6.2),5)); label("$B$", (9.5,-9.5), S); label("$A$", (-9.5,-9.5), S); [/asy]

$\textbf{(A) }   21   \qquad    \textbf{(B) }  29   \qquad    \textbf{(C) }  58   \qquad   \textbf{(D) } 69 \qquad  \textbf{(E) }   93$

Solution

Problem 16

Right triangle $ABC$ has leg lengths $AB=20$ and $BC=21$. Including $\overline{AB}$ and $\overline{BC}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?

$\textbf{(A) }5 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }13 \qquad \textbf{(E) }15 \qquad$

Solution

Problem 17

Let $S$ be a set of $6$ integers taken from $\{1,2,\dots,12\}$ with the property that if $a$ and $b$ are elements of $S$ with $a<b$, then $b$ is not a multiple of $a$. What is the least possible value of an element in $S$?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 7$

Solution

Problem 18

How many nonnegative integers can be written in the form \[a_7\cdot3^7+a_6\cdot3^6+a_5\cdot3^5+a_4\cdot3^4+a_3\cdot3^3+a_2\cdot3^2+a_1\cdot3^1+a_0\cdot3^0,\] where $a_i\in \{-1,0,1\}$ for $0\le i \le 7$?

$\textbf{(A) } 512 \qquad  \textbf{(B) } 729 \qquad  \textbf{(C) } 1094 \qquad  \textbf{(D) } 3281 \qquad  \textbf{(E) } 59,048$

Solution

Problem 19

A number $m$ is randomly selected from the set $\{11,13,15,17,19\}$, and a number $n$ is randomly selected from $\{1999,2000,2001,\ldots,2018\}$. What is the probability that $m^n$ has a units digit of $1$?

$\textbf{(A) }   \frac{1}{5}   \qquad        \textbf{(B) }   \frac{1}{4}   \qquad    \textbf{(C) }   \frac{3}{10}   \qquad   \textbf{(D) } \frac{7}{20} \qquad  \textbf{(E) }   \frac{2}{5}$

Solution

Problem 20

A scanning code consists of a $7 \times 7$ grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of each color in this grid of $49$ squares. A scanning code is called $\textit{symmetric}$ if its look does not change when the entire square is rotated by a multiple of $90 ^{\circ}$ counterclockwise around its center, nor when it is reflected across a line joining opposite corners or a line joining midpoints of opposite sides. What is the total number of possible symmetric scanning codes?

$\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}$

Solution

Problem 21

Which of the following describes the set of values of $a$ for which the curves $x^2+y^2=a^2$ and $y=x^2-a$ in the real $xy$-plane intersect at exactly $3$ points?

$\textbf{(A) }a=\frac14 \qquad \textbf{(B) }\frac14 < a < \frac12 \qquad \textbf{(C) }a>\frac14 \qquad \textbf{(D) }a=\frac12 \qquad \textbf{(E) }a>\frac12 \qquad$

Solution

Problem 22

Let $a, b, c,$ and $d$ be positive integers such that $\gcd(a, b)=24$, $\gcd(b, c)=36$, $\gcd(c, d)=54$, and $70<\gcd(d, a)<100$. Which of the following must be a divisor of $a$?

$\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}$

Solution

Problem 23

Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths $3$ and $4$ units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is $2$ units. What fraction of the field is planted?

[asy] /* Edited by MRENTHUSIASM */ size(160); pair A, B, C, D, F; A = origin; B = (4,0); C = (0,3); D = (2/7,2/7); F = foot(D,B,C); fill(A--(2/7,0)--D--(0,2/7)--cycle, lightgray); draw(A--B--C--cycle); draw((2/7,0)--D--(0,2/7)); label("$4$", midpoint(A--B), N); label("$3$", midpoint(A--C), E); label("$2$", midpoint(D--F), SE); label("$S$", midpoint(A--D)); draw(D--F, dashed); [/asy]

$\textbf{(A) }   \frac{25}{27}   \qquad        \textbf{(B) }   \frac{26}{27}   \qquad    \textbf{(C) }   \frac{73}{75}   \qquad   \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }   \frac{74}{75}$

Solution

Problem 24

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$

Solution

Problem 25

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A) } 12 \qquad \textbf{(B) } 14 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 20$

Solution

See also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2017 AMC 10B Problems
Followed by
2018 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png