Difference between revisions of "2002 AIME I Problems/Problem 4"
(→Solution) |
m (added link) |
||
(11 intermediate revisions by 7 users not shown) | |||
Line 2: | Line 2: | ||
Consider the sequence defined by <math>a_k =\dfrac{1}{k^2+k}</math> for <math>k\geq 1</math>. Given that <math>a_m+a_{m+1}+\cdots+a_{n-1}=\dfrac{1}{29}</math>, for positive integers <math>m</math> and <math>n</math> with <math>m<n</math>, find <math>m+n</math>. | Consider the sequence defined by <math>a_k =\dfrac{1}{k^2+k}</math> for <math>k\geq 1</math>. Given that <math>a_m+a_{m+1}+\cdots+a_{n-1}=\dfrac{1}{29}</math>, for positive integers <math>m</math> and <math>n</math> with <math>m<n</math>, find <math>m+n</math>. | ||
− | == Solution == | + | == Solution 1 == |
− | <math>\dfrac{1}{k^2+k}=\dfrac{1}{k(k+1)}=\dfrac{1}{k}-\dfrac{1}{k+1}</math>. Thus, | + | Using [[partial fraction decomposition]] yields <math>\dfrac{1}{k^2+k}=\dfrac{1}{k(k+1)}=\dfrac{1}{k}-\dfrac{1}{k+1}</math>. Thus, |
− | <math>a_m+a_{m+1} | + | <math>a_m+a_{m+1}+\cdots +a_{n-1}=\dfrac{1}{m}-\dfrac{1}{m+1}+\dfrac{1}{m+1}-\dfrac{1}{m+2}+\cdots +\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{1}{m}-\dfrac{1}{n}</math> |
− | Which | + | Which means that |
<math>\dfrac{n-m}{mn}=\dfrac{1}{29}</math> | <math>\dfrac{n-m}{mn}=\dfrac{1}{29}</math> | ||
− | Since we need a 29 in the denominator, let <math>n=29t</math>.* Substituting, | + | Since we need a factor of 29 in the denominator, we let <math>n=29t</math>.* Substituting, we get |
<math>29t-m=mt</math> | <math>29t-m=mt</math> | ||
+ | |||
+ | so | ||
<math>\frac{29t}{t+1} = m</math> | <math>\frac{29t}{t+1} = m</math> | ||
− | Since | + | Since <math>m</math> is an integer, <math>t+1 = 29</math>, so <math>t=28</math>. It quickly follows that <math>n=29(28)</math> and <math>m=28</math>, so <math>m+n = 30(28) = \fbox{840}</math>. |
+ | |||
+ | *If <math>m=29t</math>, a similar argument to the one above implies <math>m=29(28)</math> and <math>n=28</math>, which implies <math>m>n</math>. This is impossible since <math>n-m>0</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | Note that <math>a_1 + a_2 + \cdots + a_i = \dfrac{i}{i+1}</math>. This can be proven by induction. Thus, <math>\sum\limits_{i=m}^{n-1} a_i = \sum\limits_{i=1}^{n-1} a_i - \sum\limits_{i=1}^{m-1} a_i = \dfrac{n-1}{n} - \dfrac{m-1}{m} = \dfrac{n-m}{mn} = 1/29</math>. Cross-multiplying yields <math>29n - 29m - mn = 0</math>, and adding <math>29^2</math> to both sides gives <math>(29-m)(29+n) = 29^2</math>. Clearly, <math>m < n \implies 29 - m = 1</math> and <math>29 + n = 29^2</math>. Hence, <math>m = 28</math>, <math>n = 812</math>, and <math>m+n = \fbox{840}</math>. | ||
+ | |||
+ | ~ keeper1098 | ||
+ | |||
+ | == Video Solution by OmegaLearn == | ||
+ | https://youtu.be/lH-0ul1hwKw?t=134 | ||
− | + | ~ pi_is_3.14 | |
== See also == | == See also == | ||
{{AIME box|year=2002|n=I|num-b=3|num-a=5}} | {{AIME box|year=2002|n=I|num-b=3|num-a=5}} | ||
+ | {{MAA Notice}} |
Latest revision as of 10:27, 5 October 2024
Problem
Consider the sequence defined by for . Given that , for positive integers and with , find .
Solution 1
Using partial fraction decomposition yields . Thus,
Which means that
Since we need a factor of 29 in the denominator, we let .* Substituting, we get
so
Since is an integer, , so . It quickly follows that and , so .
*If , a similar argument to the one above implies and , which implies . This is impossible since .
Solution 2
Note that . This can be proven by induction. Thus, . Cross-multiplying yields , and adding to both sides gives . Clearly, and . Hence, , , and .
~ keeper1098
Video Solution by OmegaLearn
https://youtu.be/lH-0ul1hwKw?t=134
~ pi_is_3.14
See also
2002 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.