Difference between revisions of "2016 AMC 10A Problems/Problem 19"
m (→Solution 2 (Mass points and Similar Triangles - Easy)) |
m (→Solution 3(Coordinate Bash)) |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 49: | Line 49: | ||
</asy> | </asy> | ||
− | This problem breaks down into finding <math>QP:PB</math> and <math>DQ:QB</math>. We can find the first using | + | This problem breaks down into finding <math>QP:PB</math> and <math>DQ:QB</math>. We can find the first using mass points, and the second using similar triangles. |
Draw point <math>G</math> on <math>DB</math> such that <math>FG\parallel CD</math>. Then, by similar triangles <math>FG=BF\cdot 2=4</math>. Again, by similar triangles <math>AQB</math> and <math>FQG</math>, <math>AQ:FQ=AB:FG=6:4=3:2</math>. Now we begin Mass Points. | Draw point <math>G</math> on <math>DB</math> such that <math>FG\parallel CD</math>. Then, by similar triangles <math>FG=BF\cdot 2=4</math>. Again, by similar triangles <math>AQB</math> and <math>FQG</math>, <math>AQ:FQ=AB:FG=6:4=3:2</math>. Now we begin Mass Points. | ||
Line 60: | Line 60: | ||
Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>. | Now, we wish to get <math>DQ:QP:PB</math>. Observe that <math>BQ=QP+PB</math>. So, <math>DQ:BQ=DQ:QP+PB=3:2</math> so (since <math>QP:PB=3:5</math> has sum <math>3+5=8</math>), <math>DQ:QP+PB=3:2=12:8</math>. now, we may combine the two and get <math>DQ:QP:PB=12:3:5</math> so <math>r+s+t=12+3+5=\boxed{\textbf{(E) }20}</math>. | ||
− | ~Firebolt360 | + | ~Firebolt360(minor edits by vadava_lx) |
==Solution 3(Coordinate Bash)== | ==Solution 3(Coordinate Bash)== | ||
− | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor LaTeX edits by dolphin7 | + | We can set coordinates for the points. <math>D=(0,0), C=(6,0), B=(6,3),</math> and <math>A=(0,3)</math>. The line <math>BD</math>'s equation is <math>y = \frac{1}{2}x</math>, line <math>AE</math>'s equation is <math>y = -\frac{1}{6}x + 3</math>, and line <math>AF</math>'s equation is <math>y = -\frac{1}{3}x + 3</math>. Adding the equations of lines <math>BD</math> and <math>AE</math>, we find that the coordinates of <math>P</math> are <math>\left(\frac{9}{2},\frac{9}{4}\right)</math>. Furthermore we find that the coordinates of <math>Q</math> are <math>\left(\frac{18}{5}, \frac{9}{5}\right)</math>. Using the [[Pythagorean Theorem]], we get that the length of <math>QD</math> is <math>\sqrt{\left(\frac{18}{5}\right)^2+\left(\frac{9}{5}\right)^2} = \sqrt{\frac{405}{25}} = \frac{\sqrt{405}}{5} = \frac{9\sqrt{5}}{5}</math>, and the length of <math>DP</math> is <math>\sqrt{\left(\frac{9}{2}\right)^2+\left(\frac{9}{4}\right)^2} = \sqrt{\frac{81}{4} + \frac{81}{16}} = \sqrt{\frac{405}{16}} = \frac{\sqrt{405}}{4} = \frac{9\sqrt{5}}{4}.</math> <math>PQ = DP - DQ = \frac{9\sqrt{5}}{4} - \frac{9\sqrt{5}}{5} = \frac{9\sqrt{5}}{20}.</math> The length of <math>DB = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}</math>. Then <math>BP= 3\sqrt{5} - \frac{9\sqrt{5}}{4} = \frac{3\sqrt{5}}{4}.</math> The ratio <math>BP : PQ : QD = \frac{3\sqrt{5}}{4} : \frac{9\sqrt{5}}{20} : \frac{9\sqrt{5}}{5} = 15\sqrt{5} : 9\sqrt{5} : 36\sqrt{5} = 15 : 9 : 36 = 5 : 3 : 12.</math> Then <math>r, s,</math> and <math>t</math> is <math>5, 3,</math> and <math>12</math>, respectively. The problem tells us to find <math>r + s + t</math>, so <math>5 + 3 + 12 = \boxed{\textbf{(E) }20}</math> ~ minor <math>\LaTeX</math> edits by dolphin7 |
==Solution 4== | ==Solution 4== | ||
Line 86: | Line 86: | ||
~IceMatrix | ~IceMatrix | ||
− | == Video Solution 3 == | + | == Video Solution 3 by OmegaLearn == |
https://youtu.be/4_x1sgcQCp4?t=3406 | https://youtu.be/4_x1sgcQCp4?t=3406 | ||
Latest revision as of 17:49, 3 October 2024
Contents
Problem
In rectangle and . Point between and , and point between and are such that . Segments and intersect at and , respectively. The ratio can be written as where the greatest common factor of and is What is ?
Solution 1 (Similar Triangles)
Use similar triangles. Our goal is to put the ratio in terms of . Since Therefore, . Similarly, . This means that . Therefore, so
Solution 2 (Mass points and Similar Triangles - Easy)
This problem breaks down into finding and . We can find the first using mass points, and the second using similar triangles.
Draw point on such that . Then, by similar triangles . Again, by similar triangles and , . Now we begin Mass Points.
We will consider the triangle with center , so that balances and , and balances and . Assign a mass of to . Then, so . By mass points addition, since balances and . Also, so so . Then, .
To calculate , extend past to point such that lies on . Then is similar to so . Also, is similar to so
Now, we wish to get . Observe that . So, so (since has sum ), . now, we may combine the two and get so .
~Firebolt360(minor edits by vadava_lx)
Solution 3(Coordinate Bash)
We can set coordinates for the points. and . The line 's equation is , line 's equation is , and line 's equation is . Adding the equations of lines and , we find that the coordinates of are . Furthermore we find that the coordinates of are . Using the Pythagorean Theorem, we get that the length of is , and the length of is The length of . Then The ratio Then and is and , respectively. The problem tells us to find , so ~ minor edits by dolphin7
Solution 4
Extend to meet at point . Since and , by similar triangles and . It follows that . Now, using similar triangles and , . WLOG let . Solving for gives and . So our desired ratio is and .
Solution 5 (Mass Points)
Draw line segment , and call the intersection between and point . In , observe that and . Using mass points, find that . Again utilizing , observe that and . Use mass points to find that . Now, draw a line segment with points ,,, and ordered from left to right. Set the values ,, and . Setting both sides segment equal, we get . Plugging in and solving gives , ,. The question asks for , so we add to and multiply the ratio by to create integers. This creates . This sums up to
Solution 6 (Easy Coord Bash)
We set coordinates for the points. Let and . Then the equation of line is the equation of line is and the equation of line is . We find that the x-coordinate of point is by solving Similarly we find that the x-coordinate of point is by solving It follows that Hence and ~ Solution by dolphin7
Video Solution
https://www.youtube.com/watch?v=aG9JiBMd0ag
Video Solution 2
~IceMatrix
Video Solution 3 by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=3406
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.