Difference between revisions of "1985 AJHSME Problems/Problem 3"

(Solution 2 (Brute Force))
 
(4 intermediate revisions by 2 users not shown)
Line 19: Line 19:
  
 
So the answer is <math>\boxed{\text{D}}</math>
 
So the answer is <math>\boxed{\text{D}}</math>
 +
 +
== Solution 2 (Brute Force) ==
 +
 +
<math>10^7</math> is <math>10000000</math>
 +
 +
<math>5 \times 10^4</math> is <math>50000</math>
 +
 +
Thus the answer is <math>200</math>, or <math>\boxed{\textbf{(D)}\ 200}</math>
 +
 +
==Video Solution by BoundlessBrain!==
 +
https://youtu.be/BfFv227egOg
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 21:07, 2 October 2024

Problem

$\frac{10^7}{5\times 10^4}=$


$\text{(A)}\ .002 \qquad \text{(B)}\ .2 \qquad \text{(C)}\ 20 \qquad \text{(D)}\ 200 \qquad \text{(E)}\ 2000$

Solution

We immediately see some canceling. We see powers of ten on the top and on the bottom of the fraction, and we make quick work of this: \[\frac{10^7}{5 \times 10^4} = \frac{10^3}{5}\]

We know that $10^3 = 10 \times 10 \times 10$, so

\begin{align*} \frac{10^3}{5} &= \frac{10\times 10\times 10}{5} \\ &= 2\times 10\times 10 \\ &= 200 \\ \end{align*}

So the answer is $\boxed{\text{D}}$

Solution 2 (Brute Force)

$10^7$ is $10000000$

$5 \times 10^4$ is $50000$

Thus the answer is $200$, or $\boxed{\textbf{(D)}\ 200}$

Video Solution by BoundlessBrain!

https://youtu.be/BfFv227egOg

Video Solution

https://youtu.be/KW5HexBjEHU

~savannahsolver

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png