Difference between revisions of "1998 AIME Problems/Problem 5"

 
(Solution)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Given that <math>A_k = \frac {k(k - 1)}2\cos\frac {k(k - 1)\pi}2,</math> find <math>|A_{19} + A_{20} + \cdots + A_{98}|.</math>
  
 
== Solution ==
 
== Solution ==
 +
Though the problem may appear to be quite daunting, it is actually not that difficult. <math>\frac {k(k-1)}2</math> always evaluates to an integer ([[triangular number]]), and the [[cosine]] of <math>n\pi</math> where <math>n \in \mathbb{Z}</math> is 1 if <math>n</math> is even and -1 if <math>n</math> is odd. <math>\frac {k(k-1)}2</math> will be even if <math>4|k</math> or <math>4|k-1</math>, and odd otherwise. 
 +
 +
So our sum looks something like:
 +
 +
<math>\left|\sum_{i=19}^{98} A_i\right| =- \frac{19(18)}{2} + \frac{20(19)}{2} + \frac{21(20)}{2} - \frac{22(21)}{2} - \frac{23(22)}{2} + \frac{24(23)}{2} \cdots - \frac{98(97)}{2}</math>
 +
 +
If we group the terms in pairs, we see that we need a formula for <math>-\frac{(n)(n-1)}{2} + \frac{(n+1)(n)}{2} = \left(\frac n2\right)(n+1 - (n-1)) = n</math>. So the first two fractions add up to <math>19</math>, the next two to <math>-21</math>, and so forth.
 +
 +
If we pair the terms again now, each pair adds up to <math>-2</math>. There are <math>\frac{98-19+1}{2 \cdot 2} = 20</math> such pairs, so our answer is <math>|-2 \cdot 20| = \boxed{40}</math>.
  
 
== See also ==
 
== See also ==
* [[1998 AIME Problems]]
+
{{AIME box|year=1998|num-b=4|num-a=6}}
 +
 
 +
[[Category:Intermediate Trigonometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 19:00, 27 September 2024

Problem

Given that $A_k = \frac {k(k - 1)}2\cos\frac {k(k - 1)\pi}2,$ find $|A_{19} + A_{20} + \cdots + A_{98}|.$

Solution

Though the problem may appear to be quite daunting, it is actually not that difficult. $\frac {k(k-1)}2$ always evaluates to an integer (triangular number), and the cosine of $n\pi$ where $n \in \mathbb{Z}$ is 1 if $n$ is even and -1 if $n$ is odd. $\frac {k(k-1)}2$ will be even if $4|k$ or $4|k-1$, and odd otherwise.

So our sum looks something like:

$\left|\sum_{i=19}^{98} A_i\right| =- \frac{19(18)}{2} + \frac{20(19)}{2} + \frac{21(20)}{2} - \frac{22(21)}{2} - \frac{23(22)}{2} + \frac{24(23)}{2} \cdots - \frac{98(97)}{2}$

If we group the terms in pairs, we see that we need a formula for $-\frac{(n)(n-1)}{2} + \frac{(n+1)(n)}{2} = \left(\frac n2\right)(n+1 - (n-1)) = n$. So the first two fractions add up to $19$, the next two to $-21$, and so forth.

If we pair the terms again now, each pair adds up to $-2$. There are $\frac{98-19+1}{2 \cdot 2} = 20$ such pairs, so our answer is $|-2 \cdot 20| = \boxed{40}$.

See also

1998 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png