Difference between revisions of "2004 IMO Shortlist Problems/A5"

(Created page with "== Problem == If <math>a,b,c</math> are three positive real numbers such that <math>ab+bc+ca=1</math>, prove <math><cmath> \sqrt[3]{\frac{1}{a}+6b}+\sqrt[3]{\frac{1}{b}+6c}+\s...")
 
(Problem)
 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
If <math>a,b,c</math> are three positive real numbers such that <math>ab+bc+ca=1</math>, prove <math><cmath> \sqrt[3]{\frac{1}{a}+6b}+\sqrt[3]{\frac{1}{b}+6c}+\sqrt[3]{\frac{1}{c}+6a}\le\frac{1}{abc}. </cmath></math>
 
If <math>a,b,c</math> are three positive real numbers such that <math>ab+bc+ca=1</math>, prove <math><cmath> \sqrt[3]{\frac{1}{a}+6b}+\sqrt[3]{\frac{1}{b}+6c}+\sqrt[3]{\frac{1}{c}+6a}\le\frac{1}{abc}. </cmath></math>
 +
== Solution ==
 +
https://youtu.be/jmXSmmfO7pQ?si=dxJ6At7KHlcn2NT5 [Video Solution by little fermat]

Latest revision as of 10:20, 26 September 2024

Problem

If $a,b,c$ are three positive real numbers such that $ab+bc+ca=1$, prove $<cmath> \sqrt[3]{\frac{1}{a}+6b}+\sqrt[3]{\frac{1}{b}+6c}+\sqrt[3]{\frac{1}{c}+6a}\le\frac{1}{abc}. </cmath>$

Solution

https://youtu.be/jmXSmmfO7pQ?si=dxJ6At7KHlcn2NT5 [Video Solution by little fermat]