Difference between revisions of "2018 AMC 10B Problems/Problem 22"

(Created page with "Real numbers <math>x</math> and <math>y</math> are chosen independently and uniformly at random from the interval <math>[0,1]</math>. Which of the following numbers is closest...")
 
(usually the text solution is before the video solutions)
 
(34 intermediate revisions by 21 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
Real numbers <math>x</math> and <math>y</math> are chosen independently and uniformly at random from the interval <math>[0,1]</math>. Which of the following numbers is closest to the probability that <math>x,y,</math> and <math>1</math> are the side lengths of an obtuse triangle?
 
Real numbers <math>x</math> and <math>y</math> are chosen independently and uniformly at random from the interval <math>[0,1]</math>. Which of the following numbers is closest to the probability that <math>x,y,</math> and <math>1</math> are the side lengths of an obtuse triangle?
  
 
<math>\textbf{(A)} \text{ 0.21} \qquad \textbf{(B)} \text{ 0.25} \qquad \textbf{(C)} \text{ 0.29} \qquad \textbf{(D)} \text{ 0.50} \qquad \textbf{(E)} \text{ 0.79}</math>
 
<math>\textbf{(A)} \text{ 0.21} \qquad \textbf{(B)} \text{ 0.25} \qquad \textbf{(C)} \text{ 0.29} \qquad \textbf{(D)} \text{ 0.50} \qquad \textbf{(E)} \text{ 0.79}</math>
 +
 +
== Solution 1==
 +
The Pythagorean Inequality tells us that in an obtuse triangle, <math>a^{2} + b^{2} < c^{2}</math>. The triangle inequality tells us that <math>a + b > c</math>. So, we have two inequalities:
 +
<cmath>x^2 + y^2 < 1</cmath>
 +
<cmath>x + y > 1</cmath>
 +
The first equation is <math>\frac14</math> of a circle with radius <math>1</math>, and the second equation is a line from <math>(0, 1)</math> to <math>(1, 0)</math>.
 +
So, the area is <math>\frac{\pi}{4} - \frac12</math> which is approximately <math>\boxed{\textbf{(C)} ~0.29}</math>
 +
 +
==Solution 2 (Trig)==
 +
 +
Note that the obtuse angle in the triangle has to be opposite the side that is always length <math>1</math>. This is because the largest angle is always opposite the largest side, and if two sides of the triangle were <math>1</math>, the last side would have to be greater than <math>1</math> to make an obtuse triangle. Using this observation, we can set up a law of cosines where the angle is opposite <math>1</math>:
 +
 +
<cmath>1^2=x^2+y^2-2xy\cos(\theta)</cmath>
 +
 +
where <math>x</math> and <math>y</math> are the sides that go from <math>[0,1]</math> and <math>\theta</math> is the angle opposite the side of length <math>1</math>.
 +
 +
By isolating <math>\cos(\theta)</math>, we get:
 +
 +
<cmath>\frac{1-x^2-y^2}{-2xy} = \cos(\theta)</cmath>
 +
 +
For <math>\theta</math> to be obtuse, <math>\cos(\theta)</math> must be negative. Therefore, <math>\frac{1-x^2-y^2}{-2xy}</math> is negative. Since <math>x</math> and <math>y</math> must be positive, <math>-2xy</math> must be negative, so we must make <math>1-x^2-y^2</math> positive. From here, we can set up the inequality
 +
<cmath>x^2+y^2<1</cmath>
 +
Additionally, to satisfy the definition of a triangle, we need:
 +
<cmath>x+y>1</cmath>
 +
The solution should be the overlap between the two equations in the first quadrant.
 +
 +
By observing that <math>x^2+y^2<1</math> is the equation for a circle, the amount that is in the first quadrant is <math>\frac{\pi}{4}</math>. The line can also be seen as a chord that goes from <math>(0, 1)</math> to <math>(1, 0)</math>. By cutting off the triangle of area <math>\frac{1}{2}</math> that is not part of the overlap, we get <math>\frac{\pi}{4} - \frac{1}{2} \approx \boxed{\textbf{(C)} ~0.29}</math>.
 +
 +
..why would you do this? for what purpose? its much more complicated and this is the AMC 10! -Orion 2010
 +
 +
==Video Solution & More by MegaMath==
 +
https://www.youtube.com/watch?v=d6oFfN5N_70
 +
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/LwtoLiBwO-E?t=316
 +
 +
~ pi_is_3.14
 +
 +
==Video Solution==
 +
https://youtu.be/tWkE_c3Fa3I -- Geometric Probability and Inequalities!
 +
 +
https://www.youtube.com/watch?v=GHAMU60rI5c
 +
 +
==See Also==
 +
{{AMC10 box|year=2018|ab=B|num-b=21|num-a=23}}
 +
{{MAA Notice}}

Latest revision as of 15:56, 25 September 2024

Problem

Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $[0,1]$. Which of the following numbers is closest to the probability that $x,y,$ and $1$ are the side lengths of an obtuse triangle?

$\textbf{(A)} \text{ 0.21} \qquad \textbf{(B)} \text{ 0.25} \qquad \textbf{(C)} \text{ 0.29} \qquad \textbf{(D)} \text{ 0.50} \qquad \textbf{(E)} \text{ 0.79}$

Solution 1

The Pythagorean Inequality tells us that in an obtuse triangle, $a^{2} + b^{2} < c^{2}$. The triangle inequality tells us that $a + b > c$. So, we have two inequalities: \[x^2 + y^2 < 1\] \[x + y > 1\] The first equation is $\frac14$ of a circle with radius $1$, and the second equation is a line from $(0, 1)$ to $(1, 0)$. So, the area is $\frac{\pi}{4} - \frac12$ which is approximately $\boxed{\textbf{(C)} ~0.29}$

Solution 2 (Trig)

Note that the obtuse angle in the triangle has to be opposite the side that is always length $1$. This is because the largest angle is always opposite the largest side, and if two sides of the triangle were $1$, the last side would have to be greater than $1$ to make an obtuse triangle. Using this observation, we can set up a law of cosines where the angle is opposite $1$:

\[1^2=x^2+y^2-2xy\cos(\theta)\]

where $x$ and $y$ are the sides that go from $[0,1]$ and $\theta$ is the angle opposite the side of length $1$.

By isolating $\cos(\theta)$, we get:

\[\frac{1-x^2-y^2}{-2xy} = \cos(\theta)\]

For $\theta$ to be obtuse, $\cos(\theta)$ must be negative. Therefore, $\frac{1-x^2-y^2}{-2xy}$ is negative. Since $x$ and $y$ must be positive, $-2xy$ must be negative, so we must make $1-x^2-y^2$ positive. From here, we can set up the inequality \[x^2+y^2<1\] Additionally, to satisfy the definition of a triangle, we need: \[x+y>1\] The solution should be the overlap between the two equations in the first quadrant.

By observing that $x^2+y^2<1$ is the equation for a circle, the amount that is in the first quadrant is $\frac{\pi}{4}$. The line can also be seen as a chord that goes from $(0, 1)$ to $(1, 0)$. By cutting off the triangle of area $\frac{1}{2}$ that is not part of the overlap, we get $\frac{\pi}{4} - \frac{1}{2} \approx \boxed{\textbf{(C)} ~0.29}$.

..why would you do this? for what purpose? its much more complicated and this is the AMC 10! -Orion 2010

Video Solution & More by MegaMath

https://www.youtube.com/watch?v=d6oFfN5N_70

Video Solution by OmegaLearn

https://youtu.be/LwtoLiBwO-E?t=316

~ pi_is_3.14

Video Solution

https://youtu.be/tWkE_c3Fa3I -- Geometric Probability and Inequalities!

https://www.youtube.com/watch?v=GHAMU60rI5c

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png