Difference between revisions of "2018 AMC 10B Problems/Problem 22"

(Solution 2)
(usually the text solution is before the video solutions)
 
(17 intermediate revisions by 10 users not shown)
Line 10: Line 10:
 
<cmath>x + y > 1</cmath>
 
<cmath>x + y > 1</cmath>
 
The first equation is <math>\frac14</math> of a circle with radius <math>1</math>, and the second equation is a line from <math>(0, 1)</math> to <math>(1, 0)</math>.
 
The first equation is <math>\frac14</math> of a circle with radius <math>1</math>, and the second equation is a line from <math>(0, 1)</math> to <math>(1, 0)</math>.
So, the area is <math>\frac{\pi}{4} - \frac12</math> which is approximately <math>0.29</math>.
+
So, the area is <math>\frac{\pi}{4} - \frac12</math> which is approximately <math>\boxed{\textbf{(C)} ~0.29}</math>
  
 
==Solution 2 (Trig)==
 
==Solution 2 (Trig)==
Line 30: Line 30:
 
The solution should be the overlap between the two equations in the first quadrant.
 
The solution should be the overlap between the two equations in the first quadrant.
  
By observing that <math>x^2+y^2<1</math> is the equation for a circle, the amount that is in the first quadrant is <math>\frac{\pi}{4}</math>. The line can also be seen as a chord that goes from <math>(0, 1)</math> to <math>(1, 0)</math>. By cutting off the triangle of area <math>\frac{1}{2}</math> that is not part of the overlap, we get <math>\frac{\pi}{4} - \frac{1}{2} \approx \boxed{0.29}</math>.
+
By observing that <math>x^2+y^2<1</math> is the equation for a circle, the amount that is in the first quadrant is <math>\frac{\pi}{4}</math>. The line can also be seen as a chord that goes from <math>(0, 1)</math> to <math>(1, 0)</math>. By cutting off the triangle of area <math>\frac{1}{2}</math> that is not part of the overlap, we get <math>\frac{\pi}{4} - \frac{1}{2} \approx \boxed{\textbf{(C)} ~0.29}</math>.
  
-allenle873
+
..why would you do this? for what purpose? its much more complicated and this is the AMC 10! -Orion 2010
  
==Solution 3 (Bogus)==
+
==Video Solution & More by MegaMath==
Similarly to Solution 1, note that The Pythagorean Inequality states that in an obtuse triangle, <math>a^{2} + b^{2} < c^{2}</math>.
+
https://www.youtube.com/watch?v=d6oFfN5N_70
We can now complementary count to find the probability by reversing the inequality into:  
 
<cmath>a^{2} + b^{2} \geq c^{2}</cmath>
 
Since it is given that one side is equal to <math>1</math>, and the closed interval is from <math>[0,1]</math>, we can say without loss of generality that <math>c=1</math>.
 
  
The probability that <math>x^{2}</math> and <math>y^{2}</math> sum to <math>1</math> is equal to when both <math>x^{2}</math> and <math>y^{2}</math> are <math>0.5</math>. We can estimate <math>\sqrt{0.5}</math> to be <math>\approx 0.707</math>.
+
== Video Solution by OmegaLearn ==
Now we know the probability that <math>a^{2} + b^{2} > 1</math> is just when <math>x</math> and/or <math>y</math> equal any value between <math>0.707</math> and <math>1</math>.
+
https://youtu.be/LwtoLiBwO-E?t=316
  
The probability that <math>x</math> or <math>y</math> lie between <math>0.707</math> and <math>1</math> is <math>0.293</math>.
+
~ pi_is_3.14
This gives us <math>\approx \boxed{C \ 0.29}</math>.
 
  
-Dynosol
+
==Video Solution==
 +
https://youtu.be/tWkE_c3Fa3I -- Geometric Probability and Inequalities!
  
==Solution through video==
 
 
https://www.youtube.com/watch?v=GHAMU60rI5c
 
https://www.youtube.com/watch?v=GHAMU60rI5c
  

Latest revision as of 15:56, 25 September 2024

Problem

Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $[0,1]$. Which of the following numbers is closest to the probability that $x,y,$ and $1$ are the side lengths of an obtuse triangle?

$\textbf{(A)} \text{ 0.21} \qquad \textbf{(B)} \text{ 0.25} \qquad \textbf{(C)} \text{ 0.29} \qquad \textbf{(D)} \text{ 0.50} \qquad \textbf{(E)} \text{ 0.79}$

Solution 1

The Pythagorean Inequality tells us that in an obtuse triangle, $a^{2} + b^{2} < c^{2}$. The triangle inequality tells us that $a + b > c$. So, we have two inequalities: \[x^2 + y^2 < 1\] \[x + y > 1\] The first equation is $\frac14$ of a circle with radius $1$, and the second equation is a line from $(0, 1)$ to $(1, 0)$. So, the area is $\frac{\pi}{4} - \frac12$ which is approximately $\boxed{\textbf{(C)} ~0.29}$

Solution 2 (Trig)

Note that the obtuse angle in the triangle has to be opposite the side that is always length $1$. This is because the largest angle is always opposite the largest side, and if two sides of the triangle were $1$, the last side would have to be greater than $1$ to make an obtuse triangle. Using this observation, we can set up a law of cosines where the angle is opposite $1$:

\[1^2=x^2+y^2-2xy\cos(\theta)\]

where $x$ and $y$ are the sides that go from $[0,1]$ and $\theta$ is the angle opposite the side of length $1$.

By isolating $\cos(\theta)$, we get:

\[\frac{1-x^2-y^2}{-2xy} = \cos(\theta)\]

For $\theta$ to be obtuse, $\cos(\theta)$ must be negative. Therefore, $\frac{1-x^2-y^2}{-2xy}$ is negative. Since $x$ and $y$ must be positive, $-2xy$ must be negative, so we must make $1-x^2-y^2$ positive. From here, we can set up the inequality \[x^2+y^2<1\] Additionally, to satisfy the definition of a triangle, we need: \[x+y>1\] The solution should be the overlap between the two equations in the first quadrant.

By observing that $x^2+y^2<1$ is the equation for a circle, the amount that is in the first quadrant is $\frac{\pi}{4}$. The line can also be seen as a chord that goes from $(0, 1)$ to $(1, 0)$. By cutting off the triangle of area $\frac{1}{2}$ that is not part of the overlap, we get $\frac{\pi}{4} - \frac{1}{2} \approx \boxed{\textbf{(C)} ~0.29}$.

..why would you do this? for what purpose? its much more complicated and this is the AMC 10! -Orion 2010

Video Solution & More by MegaMath

https://www.youtube.com/watch?v=d6oFfN5N_70

Video Solution by OmegaLearn

https://youtu.be/LwtoLiBwO-E?t=316

~ pi_is_3.14

Video Solution

https://youtu.be/tWkE_c3Fa3I -- Geometric Probability and Inequalities!

https://www.youtube.com/watch?v=GHAMU60rI5c

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png