Difference between revisions of "Successor set"

(New page: A set <math>S\subset \mathbb{R}</math> is called a '''Successor Set''' iff (i)<math>1\in S</math> (ii)<math>\forall n\in S</math>; <math>n+1\in S</math> Note that the set of [[Natural ...)
 
Line 9: Line 9:
  
 
For example, the set <math>S=\{1,\sqrt{2},2,1+\sqrt{2},\ldots\}</math> is also a successor set.
 
For example, the set <math>S=\{1,\sqrt{2},2,1+\sqrt{2},\ldots\}</math> is also a successor set.
 +
The set <math>\mathbb{N}</math> is called the [b]Smallest Sucessor Set[/b] because for any set <math>\mathbb{F}</math> that is a Succesor Set <math>\mathbb{N} \subset \mathbb{F}</math>
 +
Also the set <math>\mathbb{N}</math> is calle dthe [b]Smallest Succesor Set[/b] because for any <math>\mathbb{F}</math> that is a succesor set <math>\mathbb{N} \subset \mathbb{F}</math>

Revision as of 04:21, 26 January 2008

A set $S\subset \mathbb{R}$ is called a Successor Set iff

(i)$1\in S$

(ii)$\forall n\in S$; $n+1\in S$

Note that the set of natural numbers $\mathbb{N}=\{1,2,3\ldots\}$is not the only successor set.


For example, the set $S=\{1,\sqrt{2},2,1+\sqrt{2},\ldots\}$ is also a successor set. The set $\mathbb{N}$ is called the [b]Smallest Sucessor Set[/b] because for any set $\mathbb{F}$ that is a Succesor Set $\mathbb{N} \subset \mathbb{F}$ Also the set $\mathbb{N}$ is calle dthe [b]Smallest Succesor Set[/b] because for any $\mathbb{F}$ that is a succesor set $\mathbb{N} \subset \mathbb{F}$