Difference between revisions of "De Moivre's Theorem"
m |
m (→Proof) |
||
Line 12: | Line 12: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
(\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\ | (\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\ | ||
− | & =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by our assumption | + | & =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by our assumption } \\ |
& =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\ | & =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\ | ||
& =\operatorname{cis}((k+1)(x)) & \text { by various trigonometric identities } | & =\operatorname{cis}((k+1)(x)) & \text { by various trigonometric identities } |
Revision as of 09:26, 31 August 2024
De Moivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for and , .
Proof
This is one proof of de Moivre's theorem by induction.
- If :
- If , the formula holds true because
- Assume the formula is true for . Now, consider :
- Therefore, the result is true for all nonnegative integers .
- If , one must consider when is a positive integer.
And thus, the formula proves true for all integral values of .
Generalization
Note that from the functional equation where , we see that behaves like an exponential function. Indeed, Euler's identity states that . This extends de Moivre's theorem to all .