Difference between revisions of "2024 AMC 12A Problems/Problem 1"

m (removed vandalism)
(Tag: Blanking)
Line 1: Line 1:
If <math>x+1=2</math>, what is <math>x</math>?
 
  
(a) <math>1</math>
 
 
(b) <math>\frac{1}{2} \int_{0}^{2} x \, dx</math>
 
 
(c) <math>\left[\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x\right]^{i\pi} + 2</math>
 
 
(d) <math>\sin^2 \theta + \cos^2 \theta</math>
 
 
(e) <math>\frac{d}{d\theta}\left[ \frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2}}{\pi + 2}\right)^{\frac{1}{3}} \right] + 1
 
</math>
 

Revision as of 06:01, 24 August 2024