Difference between revisions of "2024 AMC 12A Problems/Problem 1"
Line 9: | Line 9: | ||
(d) <math>\sin^2 \theta + \cos^2 \theta</math> | (d) <math>\sin^2 \theta + \cos^2 \theta</math> | ||
− | (e) <math>\frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2 | + | (e) <math>\frac{d}{dx} \left[ \frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2 |
</math> | </math> |
Revision as of 21:50, 19 August 2024
If , what is ?
(a)
(b)
(c)
(d)
(e) $\frac{d}{dx} \left[ \frac{3 e^{\pi \phi} \cdot \left(2 \pi + \phi^3\right)}{\sqrt{4 e^{\pi \phi} \cdot \pi}} + \left(5 e^{\phi \pi} + \frac{2 \phi^{\pi}}{3}\right)^{\frac{4 \pi}{\phi}} - \frac{6 \pi^3}{e^{\phi}} + \left(\frac{e^{\pi \phi^2$ (Error compiling LaTeX. Unknown error_msg)