Difference between revisions of "2013 Mock AIME I Problems/Problem 10"
m (formatted sections) |
m (links, formatting changes) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | Note <cmath>\sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\frac{\frac{3}{T_i}}{1-\frac{3}{T_i}}=\frac{3}{T_i-3}.</cmath> So we wish to evaluate <cmath>\sum_{i=3}^\infty\frac{3}{T_i-3}=\sum_{i=3}^\infty\frac{6}{i^2+i-6}=\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}.</cmath> | + | Note <cmath>\sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\frac{\frac{3}{T_i}}{1-\frac{3}{T_i}}=\frac{3}{T_i-3}.</cmath> So, after using the formula for [[triangular numbers#Formula|triangular numbers]], we wish to evaluate <cmath>\sum_{i=3}^\infty\frac{3}{T_i-3}=\sum_{i=3}^\infty\frac{6}{i^2+i-6}=\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}.</cmath> By [[partial fraction decomposition]], <math>\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\frac{1}{i-2}-\frac{1}{i+3}\right)</math>. [[telescoping series|Telescoping]], we obtain <cmath>\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\sum_{i=3}^\infty \frac{1}{i-2}-\frac{1}{i+3}\right)=\frac{6}{5}(1+\tfrac12+\tfrac13+\tfrac14+\tfrac15)=\frac{137}{50}.</cmath> Hence, <math>m+n=\boxed{187}</math>. |
== See also == | == See also == |
Latest revision as of 13:38, 30 July 2024
Problem
Let denote the th triangular number, i.e. . Let and be relatively prime positive integers so that Find .
Solution
Note So, after using the formula for triangular numbers, we wish to evaluate By partial fraction decomposition, . Telescoping, we obtain Hence, .