Difference between revisions of "2013 Mock AIME I Problems/Problem 10"
m (see also) |
m (links, formatting changes) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Problem | + | == Problem == |
+ | Let <math>T_n</math> denote the <math>n</math>th triangular number, i.e. <math>T_n=1+2+3+\cdots+n</math>. Let <math>m</math> and <math>n</math> be relatively prime positive integers so that <cmath>\sum_{i=3}^\infty \sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\dfrac{m}{n}.</cmath> Find <math>m+n</math>. | ||
− | Solution | + | == Solution == |
+ | Note <cmath>\sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\frac{\frac{3}{T_i}}{1-\frac{3}{T_i}}=\frac{3}{T_i-3}.</cmath> So, after using the formula for [[triangular numbers#Formula|triangular numbers]], we wish to evaluate <cmath>\sum_{i=3}^\infty\frac{3}{T_i-3}=\sum_{i=3}^\infty\frac{6}{i^2+i-6}=\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}.</cmath> By [[partial fraction decomposition]], <math>\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\frac{1}{i-2}-\frac{1}{i+3}\right)</math>. [[telescoping series|Telescoping]], we obtain <cmath>\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\sum_{i=3}^\infty \frac{1}{i-2}-\frac{1}{i+3}\right)=\frac{6}{5}(1+\tfrac12+\tfrac13+\tfrac14+\tfrac15)=\frac{137}{50}.</cmath> Hence, <math>m+n=\boxed{187}</math>. | ||
== See also == | == See also == |
Latest revision as of 13:38, 30 July 2024
Problem
Let denote the th triangular number, i.e. . Let and be relatively prime positive integers so that Find .
Solution
Note So, after using the formula for triangular numbers, we wish to evaluate By partial fraction decomposition, . Telescoping, we obtain Hence, .