Difference between revisions of "2013 Mock AIME I Problems/Problem 10"
m (see also) |
m (formatted sections) |
||
Line 1: | Line 1: | ||
− | Problem | + | == Problem == |
+ | Let <math>T_n</math> denote the <math>n</math>th triangular number, i.e. <math>T_n=1+2+3+\cdots+n</math>. Let <math>m</math> and <math>n</math> be relatively prime positive integers so that <cmath>\sum_{i=3}^\infty \sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\dfrac{m}{n}.</cmath> Find <math>m+n</math>. | ||
− | Solution | + | == Solution == |
+ | Note <cmath>\sum_{k=1}^\infty \left(\dfrac{3}{T_i}\right)^k=\frac{\frac{3}{T_i}}{1-\frac{3}{T_i}}=\frac{3}{T_i-3}.</cmath> So we wish to evaluate <cmath>\sum_{i=3}^\infty\frac{3}{T_i-3}=\sum_{i=3}^\infty\frac{6}{i^2+i-6}=\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}.</cmath> It is not difficult to check <math>\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\frac{1}{i-2}-\frac{1}{i+3}\right)</math>. Telescoping, we obtain <cmath>\sum_{i=3}^\infty\frac{6}{(i-2)(i+3)}=\frac{6}{5}\left(\sum_{i=3}^\infty \frac{1}{i-2}-\frac{1}{i+3}\right)=\frac{6}{5}(1+1/2+1/3+1/4+1/5)=\frac{137}{50}.</cmath> Hence, <math>m+n=\boxed{187}</math>. | ||
== See also == | == See also == |
Revision as of 13:32, 30 July 2024
Problem
Let denote the th triangular number, i.e. . Let and be relatively prime positive integers so that Find .
Solution
Note So we wish to evaluate It is not difficult to check . Telescoping, we obtain Hence, .