Difference between revisions of "2020 AMC 12B Problems/Problem 25"

m (Solution)
(Solution 5 (Calculus))
 
(17 intermediate revisions by 5 users not shown)
Line 8: Line 8:
 
<math>\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}</math>
 
<math>\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}</math>
  
==Solution==
+
==Solution 1 ==
  
 
Let's start first by manipulating the given inequality.
 
Let's start first by manipulating the given inequality.
Line 15: Line 15:
 
<cmath>\sin^{2}{(\pi x)}>1-\sin^{2}{(\pi y)}=\cos^{2}{(\pi y)}</cmath>
 
<cmath>\sin^{2}{(\pi x)}>1-\sin^{2}{(\pi y)}=\cos^{2}{(\pi y)}</cmath>
  
Let's consider the boundary cases: <math>\sin{(\pi x)}=\cos{(\pi y)}</math> and <math>\sin{(\pi x)}=-\cos{(\pi y)}</math>
+
Let's consider the boundary cases: <math>\sin{(\pi x)}=\pm \cos{(\pi y)}</math>.
  
<cmath>\sin{(\pi x)}=\cos{(\pi y)}=\sin{(\frac{\pi}{2}\pm \pi y)}</cmath>
+
<cmath>\sin{(\pi x)}=\pm \cos{(\pi y)}=\sin{(\tfrac 12 {\pi}\pm \pi y)}</cmath>
  
 
Solving the first case gives us <cmath>y=\tfrac{1}{2}-x \quad \textrm{and} \quad  y=x-\tfrac{1}{2}.</cmath> Solving the second case gives us <cmath>y=x+\tfrac{1}{2}\quad \textrm{and} \quad y=\tfrac{3}{2}-x.</cmath> If we graph these equations in <math>[0,1]\times[0,1]</math>, we get a rhombus shape.  
 
Solving the first case gives us <cmath>y=\tfrac{1}{2}-x \quad \textrm{and} \quad  y=x-\tfrac{1}{2}.</cmath> Solving the second case gives us <cmath>y=x+\tfrac{1}{2}\quad \textrm{and} \quad y=\tfrac{3}{2}-x.</cmath> If we graph these equations in <math>[0,1]\times[0,1]</math>, we get a rhombus shape.  
Line 34: Line 34:
 
draw(A1--B2, royalblue+dashed);
 
draw(A1--B2, royalblue+dashed);
 
draw(A--B--C--D--A, black+1.2);
 
draw(A--B--C--D--A, black+1.2);
 +
dot("$(a,0)$",(a,0),down); dot("$(a,1)$",(a,1),up);
 
</asy>
 
</asy>
 
Testing points in each section tells us that the inside of the rhombus satisfies the inequality in the problem statement.
 
Testing points in each section tells us that the inside of the rhombus satisfies the inequality in the problem statement.
Line 39: Line 40:
 
From the region graph, notice that in order to maximize <math>P(a)</math>, <math>a\geq\tfrac{1}{2}</math>. We can solve the rest with geometric probability.
 
From the region graph, notice that in order to maximize <math>P(a)</math>, <math>a\geq\tfrac{1}{2}</math>. We can solve the rest with geometric probability.
  
When <math>a\geq\tfrac{1}{2}, P(a)</math> consists of a triangle with area <math>\tfrac{1}{4}</math> and a trapezoid with bases <math>1</math> and <math>2-2a</math> and height <math>a-\frac{1}{2}</math>. Finally, to calculate <math>P(a)</math>, we divide this area by <math>a</math>, so <cmath>P(a)=\frac{1}{a}\left(\frac{1}{4}+\frac{(a-\frac{1}{2})(3-2a)}{2}\right)</cmath>
+
Instead of maximizing <math>P(a)</math>, we minimize <math>Q(a)=1-P(a)</math>. <math>Q(a)</math> consists of two squares (each broken into two triangles), one of area <math>\tfrac{1}{4}</math> and another of area <math>(a-\tfrac 12)^2</math>. To calculate <math>Q(a)</math>, we divide this area by <math>a</math>, so <cmath>Q(a) = \frac{1}{a}\left(\frac{1}{4}+(a-\tfrac 12)^2\right) = \frac{1}{a}\left(\frac{1}{2}+a^2-a\right)= a+\frac 1{2a}-1.</cmath>
  
After expanding out, we get <math>P(a)=2-a-\frac{1}{2a}</math>. In order to maximize this expression, we must minimize <math>a+\frac{1}{2a}</math>.
+
By AM-GM, <math>a+\frac{1}{2a}\geq 2\sqrt{\frac{a}{2a}}=\sqrt{2}</math>, which we can achieve by setting <math>a=\frac{\sqrt{2}}{2}</math>.
 +
 
 +
Therefore, the maximum value of <math>P(a)</math> is <math>1-\min(Q(a))</math>, which is <math>1-(\sqrt{2}-1) =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}</math>
 +
 
 +
==Solution 2 (Trigonometry Identities)==
 +
 
 +
<cmath>\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1, \quad \sin^2{(\pi x)} - (1 - \sin^2{(\pi y)} ) > 0, \quad \sin^2{(\pi x)} - \cos^2{(\pi y)} > 0</cmath>
 +
 
 +
<cmath>( \sin{(\pi x)} + \cos{(\pi y)} )(\sin{(\pi x)} - \cos{(\pi y)})> 0, \quad \left( \sin{(\pi x)} + \sin{( \frac{\pi}{2} - \pi y)} \right) \left( \sin{(\pi x)} - \sin{(\frac{\pi}{2} - \pi y)} \right)> 0</cmath>
 +
 
 +
<cmath>2\sin{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} \cos{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} 2 \sin{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} \cos{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} > 0 </cmath>
 +
 
 +
<cmath>2\sin{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} \cos{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} 2 \sin{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} \cos{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} > 0 </cmath>
 +
 
 +
<cmath>\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} \sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} > 0 </cmath>
 +
 
 +
If <math>\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} > 0</math> and <math> \sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} > 0 </math>
 +
 
 +
<cmath>0 < \pi x + \frac{\pi}{2} - \pi y < \pi \quad \text{and} \quad 0 < \pi x - \frac{\pi}{2} + \pi y < \pi</cmath>
 +
 
 +
<cmath>0 < x + \frac{1}{2} - y < 1 \quad \text{and} \quad 0 < x - \frac{1}{2} + y < 1</cmath>
 +
 
 +
<cmath>x - \frac{1}{2} < y < x + \frac{1}{2} \quad \text{and} \quad -x + \frac{1}{2} < y < -x + \frac{3}{2}</cmath>
 +
 
 +
If <math>\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} < 0</math> and <math> \sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} < 0 </math>
 +
 
 +
<cmath>\pi < \pi x + \frac{\pi}{2} - \pi y < 2\pi \quad \text{and} \quad \pi < \pi x - \frac{\pi}{2} + \pi y < 2\pi</cmath>
 +
 
 +
<cmath>1 < x + \frac{1}{2} - y < 2 \quad \text{and} \quad 1 < x - \frac{1}{2} + y < 2</cmath>
 +
 
 +
<cmath> x - \frac{3}{2} < y < x - \frac{1}{2} \quad \text{and} \quad -x + \frac{3}{2} < y < -x + \frac{5}{2}</cmath>
 +
 
 +
Notice that <math>\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} < 0</math> and <math> \sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} < 0 </math> cannot be true, because that means <math>x</math> is in the interval <math>[1, 2]</math>. Thus, <math>y</math> is in the the boundaries <math>x - \frac{1}{2} < y < x + \frac{1}{2}</math>, and <math>-x + \frac{1}{2} < y < -x + \frac{3}{2}</math>.
 +
 
 +
Finishing like Solution 1, 3, or 4 gives <math>P(a) =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}</math>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 
 +
==Solution 3 (Calculus finish)==
 +
 
 +
We find the same region as in the first solution or the second solution, and again notice we must have <math>a \geq \frac{1}{2}</math>.
 +
 
 +
We now express <math>P</math> as a function of <math>b=(1-a)</math>. The triangle on the right of the line <math>x=b</math> is an isosceles right triangle with altitude <math>b</math>, so it has area <math>b^2</math>. The total area of the region to the left of <math>x=b</math> has area <math>1-b</math>. So
 +
<cmath>P(b) = \frac{1/2 - b^2}{1-b}</cmath>
 +
Differentiating using the quotient rule, we find <math>P</math> has local extrema at
 +
<cmath>P'(b) = \frac{(1-h)(-2h)-(-1/2 - h^2)(-1)}{(1-h)^2} = 0</cmath>
 +
Setting the numerator equal to <math>0</math> and solving the quadratic, we find <math>P</math> has extrema at <math>b = 1 \pm \frac{\sqrt{2}}{2}</math>. Only <math>b=1-\frac{\sqrt 2}{2}</math> is within the desired region. Plugging in, we get <math>P(1-\frac{\sqrt 2}{2}) = \boxed{\textbf{(B)}\ 2 - \sqrt{2}}</math> as our solution. We also need to check <math>P(b=0) = 1/2</math>. But <math>1/2 < 2 - \sqrt{2}</math>, and if this isn't immediately obvious, <math>1/2</math> isn't an answer choice anyways.
 +
 
 +
~jd9 (AMGM scary)
 +
 
 +
==Solution 4 (Calculus Finish)==
 +
 
 +
We find the same region as in the first solution or the second solution, and again notice <math>a \geq \frac{1}{2}</math>.
 +
 
 +
The numerator of <math>P(a)</math> is the area of the triangle with vertices <math>(0, \frac12), (\frac12, 0), (\frac12, 1)</math> plus the area of the rectangle with vertices <math>(\frac12,0), (a,0), (a,1), (\frac12,1)</math> subtract the area of the isosceles right triangle between <math>x=a, y=0,x - \frac{1}{2}</math> and the isosceles right triangle between <math>x=a, y=1, -x + \frac{3}{2}</math>. The denominator of <math>P(a)</math> is the area of rectangle with vertices <math>(0,0), (a,0), (a,1), (0,1)</math>.
 +
 
 +
<cmath>P(a) = \frac{ \frac14 + a - \frac12 -(a - \frac12)^2 }{a} = \frac{a - \frac14 -a^2 + a - \frac14 }{a} = \frac{-a^2 + 2a - \frac12 }{a} = -a + 2 - \frac{1}{2a}</cmath>
 +
 
 +
By the power rule, <math>P'(a) = -1 - \frac12(-1)\frac{1}{a^2} = -1 + \frac{1}{2a^2}</math>. Solving <math>P'(a) = 0</math>, we find that <math>a = \frac{ \sqrt{2} }{2}</math>
  
By AM-GM, <math>a+\frac{1}{2a}\geq 2\sqrt{\frac{a}{2a}}=\sqrt{2}</math>, which we can achieve by setting <math>a=\frac{\sqrt{2}}{2}</math>.
+
<math>\because P'(a) = 0</math> when <math>a = \frac{ \sqrt{2} }{2}</math>, <math>P'(a)</math> is positive when <math>a < \frac{ \sqrt{2} }{2}</math>, and <math>P'(a)</math> is negative when <math>a > \frac{ \sqrt{2} }{2}</math>
 +
 
 +
<math>\therefore P(a)</math> has a local maximum when <math>a = \frac{ \sqrt{2} }{2}</math>.
 +
 
 +
<cmath>P(\frac{ \sqrt{2} }{2}) = - \frac{\sqrt{2} }{2} + 2 - \frac{1}{2 \cdot  \frac{\sqrt{2} }{2}} =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}</cmath>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 
 +
==Solution 5 (Calculus)==
 +
 
 +
Comparing the diagram of <math>\sin^{2}{(\pi x)}</math> and <math>\cos^{2}{(\pi y)}</math>, we can see if we let <math>x=k</math>, then <math>y\in (0+\lvert \dfrac{1}{2}-k\rvert,1-\lvert\dfrac{1}{2}-k\rvert)</math> will satisfy the above inequality.
 +
 
 +
Thus, we can write that
 +
<cmath>P(a) = \frac{1}{a} (\int_0^{a}1-2\lvert\frac{1}{2}-x\rvert{\rm d}x)</cmath>
 +
<cmath>P(a) = \frac{1}{a} (\int_0^{\frac{1}{2}}2x{\rm d}x + \int_{\frac{1}{2}}^{a}2-2x{\rm d}x) = -a+2-\frac{1}{2a}</cmath>
 +
 
 +
Then it is easy to find that <math>P(a)</math> is maximized when <math>a=\dfrac{\sqrt{2}}{2}</math>, which give us <math>P(\dfrac{\sqrt{2}}{2})=\boxed{\textbf{(B)}\ 2 - \sqrt{2}}</math>
  
Therefore, the maximum value of <math>P(a)</math> is <math>P\left(\frac{\sqrt{2}}{2}\right)=\boxed{\textbf{(B)}\ 2 - \sqrt{2}}</math>
+
~ERiccc
  
==Video Solution==
+
==Video Solution by On The Spot STEM==
On The Spot STEM:
 
 
https://www.youtube.com/watch?v=5goLUdObBrY
 
https://www.youtube.com/watch?v=5goLUdObBrY
  

Latest revision as of 03:29, 24 July 2024

Problem

For each real number $a$ with $0 \leq a \leq 1$, let numbers $x$ and $y$ be chosen independently at random from the intervals $[0, a]$ and $[0, 1]$, respectively, and let $P(a)$ be the probability that

\[\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1\] What is the maximum value of $P(a)?$

$\textbf{(A)}\ \frac{7}{12} \qquad\textbf{(B)}\ 2 - \sqrt{2} \qquad\textbf{(C)}\ \frac{1+\sqrt{2}}{4} \qquad\textbf{(D)}\ \frac{\sqrt{5}-1}{2} \qquad\textbf{(E)}\ \frac{5}{8}$

Solution 1

Let's start first by manipulating the given inequality.

\[\sin^{2}{(\pi x)}+\sin^{2}{(\pi y)}>1\] \[\sin^{2}{(\pi x)}>1-\sin^{2}{(\pi y)}=\cos^{2}{(\pi y)}\]

Let's consider the boundary cases: $\sin{(\pi x)}=\pm \cos{(\pi y)}$.

\[\sin{(\pi x)}=\pm \cos{(\pi y)}=\sin{(\tfrac 12 {\pi}\pm \pi y)}\]

Solving the first case gives us \[y=\tfrac{1}{2}-x \quad \textrm{and} \quad  y=x-\tfrac{1}{2}.\] Solving the second case gives us \[y=x+\tfrac{1}{2}\quad \textrm{and} \quad y=\tfrac{3}{2}-x.\] If we graph these equations in $[0,1]\times[0,1]$, we get a rhombus shape. [asy] defaultpen(fontsize(9)+0.8); size(200); pen p=fontsize(10); pair A,B,C,D,A1,A2,B1,B2,C1,C2,D1,D2,I,L; A=MP("(0,0)",origin,down+left,p); B=MP("(1,0)",right,down+right,p); C=MP("(1,1)",right+up,up+right,p);  D=MP("(0,1)",up,up+left,p); A1=MP("",extension(A,B,(0.5,0),(0,0.5)),2*down,p); dot(A1); A2=MP("",extension(A,D,(0.5,0),(0,0.5)),2*left,p); dot(A2); B1=MP("",extension(B,C,(0.5,0),(0,-0.5)),2*right,p); dot(B1); B2=MP("",extension(C,D,(0.5,1),(0,0.5)),2*up,p); dot(B2); real a=0.7; draw(A1--B1--B2--A2--cycle, gray+0.6); draw(a*right--a*right+up, royalblue); draw(A1--B2, royalblue+dashed); draw(A--B--C--D--A, black+1.2); dot("$(a,0)$",(a,0),down); dot("$(a,1)$",(a,1),up); [/asy] Testing points in each section tells us that the inside of the rhombus satisfies the inequality in the problem statement.

From the region graph, notice that in order to maximize $P(a)$, $a\geq\tfrac{1}{2}$. We can solve the rest with geometric probability.

Instead of maximizing $P(a)$, we minimize $Q(a)=1-P(a)$. $Q(a)$ consists of two squares (each broken into two triangles), one of area $\tfrac{1}{4}$ and another of area $(a-\tfrac 12)^2$. To calculate $Q(a)$, we divide this area by $a$, so \[Q(a) = \frac{1}{a}\left(\frac{1}{4}+(a-\tfrac 12)^2\right) = \frac{1}{a}\left(\frac{1}{2}+a^2-a\right)= a+\frac 1{2a}-1.\]

By AM-GM, $a+\frac{1}{2a}\geq 2\sqrt{\frac{a}{2a}}=\sqrt{2}$, which we can achieve by setting $a=\frac{\sqrt{2}}{2}$.

Therefore, the maximum value of $P(a)$ is $1-\min(Q(a))$, which is $1-(\sqrt{2}-1) =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}$

Solution 2 (Trigonometry Identities)

\[\sin^2{(\pi x)} + \sin^2{(\pi y)} > 1, \quad \sin^2{(\pi x)} - (1 - \sin^2{(\pi y)} ) > 0, \quad \sin^2{(\pi x)} - \cos^2{(\pi y)} > 0\]

\[( \sin{(\pi x)} + \cos{(\pi y)} )(\sin{(\pi x)} - \cos{(\pi y)})> 0, \quad \left( \sin{(\pi x)} + \sin{( \frac{\pi}{2} - \pi y)} \right) \left( \sin{(\pi x)} - \sin{(\frac{\pi}{2} - \pi y)} \right)> 0\]

\[2\sin{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} \cos{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} 2 \sin{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} \cos{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} > 0\]

\[2\sin{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} \cos{\left( \frac{ \pi x + \frac{\pi}{2} - \pi y }{2} \right)} 2 \sin{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} \cos{\left( \frac{ \pi x - \frac{\pi}{2} + \pi y }{2} \right)} > 0\]

\[\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} \sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} > 0\]

If $\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} > 0$ and $\sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} > 0$

\[0 < \pi x + \frac{\pi}{2} - \pi y < \pi \quad \text{and} \quad 0 < \pi x - \frac{\pi}{2} + \pi y < \pi\]

\[0 < x + \frac{1}{2} - y < 1 \quad \text{and} \quad 0 < x - \frac{1}{2} + y < 1\]

\[x - \frac{1}{2} < y < x + \frac{1}{2} \quad \text{and} \quad -x + \frac{1}{2} < y < -x + \frac{3}{2}\]

If $\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} < 0$ and $\sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} < 0$

\[\pi < \pi x + \frac{\pi}{2} - \pi y < 2\pi \quad \text{and} \quad \pi < \pi x - \frac{\pi}{2} + \pi y < 2\pi\]

\[1 < x + \frac{1}{2} - y < 2 \quad \text{and} \quad 1 < x - \frac{1}{2} + y < 2\]

\[x - \frac{3}{2} < y < x - \frac{1}{2} \quad \text{and} \quad -x + \frac{3}{2} < y < -x + \frac{5}{2}\]

Notice that $\sin{\left(\pi x + \frac{\pi}{2} - \pi y\right)} < 0$ and $\sin{\left( \pi x - \frac{\pi}{2} + \pi y \right)} < 0$ cannot be true, because that means $x$ is in the interval $[1, 2]$. Thus, $y$ is in the the boundaries $x - \frac{1}{2} < y < x + \frac{1}{2}$, and $-x + \frac{1}{2} < y < -x + \frac{3}{2}$.

Finishing like Solution 1, 3, or 4 gives $P(a) =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}$

~isabelchen

Solution 3 (Calculus finish)

We find the same region as in the first solution or the second solution, and again notice we must have $a \geq \frac{1}{2}$.

We now express $P$ as a function of $b=(1-a)$. The triangle on the right of the line $x=b$ is an isosceles right triangle with altitude $b$, so it has area $b^2$. The total area of the region to the left of $x=b$ has area $1-b$. So \[P(b) = \frac{1/2 - b^2}{1-b}\] Differentiating using the quotient rule, we find $P$ has local extrema at \[P'(b) = \frac{(1-h)(-2h)-(-1/2 - h^2)(-1)}{(1-h)^2} = 0\] Setting the numerator equal to $0$ and solving the quadratic, we find $P$ has extrema at $b = 1 \pm \frac{\sqrt{2}}{2}$. Only $b=1-\frac{\sqrt 2}{2}$ is within the desired region. Plugging in, we get $P(1-\frac{\sqrt 2}{2}) = \boxed{\textbf{(B)}\ 2 - \sqrt{2}}$ as our solution. We also need to check $P(b=0) = 1/2$. But $1/2 < 2 - \sqrt{2}$, and if this isn't immediately obvious, $1/2$ isn't an answer choice anyways.

~jd9 (AMGM scary)

Solution 4 (Calculus Finish)

We find the same region as in the first solution or the second solution, and again notice $a \geq \frac{1}{2}$.

The numerator of $P(a)$ is the area of the triangle with vertices $(0, \frac12), (\frac12, 0), (\frac12, 1)$ plus the area of the rectangle with vertices $(\frac12,0), (a,0), (a,1), (\frac12,1)$ subtract the area of the isosceles right triangle between $x=a, y=0,x - \frac{1}{2}$ and the isosceles right triangle between $x=a, y=1, -x + \frac{3}{2}$. The denominator of $P(a)$ is the area of rectangle with vertices $(0,0), (a,0), (a,1), (0,1)$.

\[P(a) = \frac{ \frac14 + a - \frac12 -(a - \frac12)^2 }{a} = \frac{a - \frac14 -a^2 + a - \frac14 }{a} = \frac{-a^2 + 2a - \frac12 }{a} = -a + 2 - \frac{1}{2a}\]

By the power rule, $P'(a) = -1 - \frac12(-1)\frac{1}{a^2} = -1 + \frac{1}{2a^2}$. Solving $P'(a) = 0$, we find that $a = \frac{ \sqrt{2} }{2}$

$\because P'(a) = 0$ when $a = \frac{ \sqrt{2} }{2}$, $P'(a)$ is positive when $a < \frac{ \sqrt{2} }{2}$, and $P'(a)$ is negative when $a > \frac{ \sqrt{2} }{2}$

$\therefore P(a)$ has a local maximum when $a = \frac{ \sqrt{2} }{2}$.

\[P(\frac{ \sqrt{2} }{2}) = - \frac{\sqrt{2} }{2} + 2 - \frac{1}{2 \cdot  \frac{\sqrt{2} }{2}} =\boxed{\textbf{(B)}\ 2 - \sqrt{2}}\]

~isabelchen

Solution 5 (Calculus)

Comparing the diagram of $\sin^{2}{(\pi x)}$ and $\cos^{2}{(\pi y)}$, we can see if we let $x=k$, then $y\in (0+\lvert \dfrac{1}{2}-k\rvert,1-\lvert\dfrac{1}{2}-k\rvert)$ will satisfy the above inequality.

Thus, we can write that \[P(a) = \frac{1}{a} (\int_0^{a}1-2\lvert\frac{1}{2}-x\rvert{\rm d}x)\] \[P(a) = \frac{1}{a} (\int_0^{\frac{1}{2}}2x{\rm d}x + \int_{\frac{1}{2}}^{a}2-2x{\rm d}x) = -a+2-\frac{1}{2a}\]

Then it is easy to find that $P(a)$ is maximized when $a=\dfrac{\sqrt{2}}{2}$, which give us $P(\dfrac{\sqrt{2}}{2})=\boxed{\textbf{(B)}\ 2 - \sqrt{2}}$

~ERiccc

Video Solution by On The Spot STEM

https://www.youtube.com/watch?v=5goLUdObBrY

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png