Difference between revisions of "1959 AHSME Problems/Problem 28"

(diagram, link)
m (category)
 
(2 intermediate revisions by the same user not shown)
Line 48: Line 48:
 
markscalefactor = 0.17;
 
markscalefactor = 0.17;
 
draw(anglemark(B,C,M));
 
draw(anglemark(B,C,M));
 +
 +
// Length Labels
 +
label("$a$", midpoint(B--C), (5,5));
 +
label("$b$", midpoint(A--C), S);
 +
label("$c$", midpoint(A--B), (-5,5));
  
 
</asy>
 
</asy>
  
By the [[Angle Bisector Theorem]], <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=\frac{c}{a}\rightarrow\boxed{\textbf{E}}</math>.
+
By the [[Angle Bisector Theorem]], <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=\frac{c}{a}\rightarrow\boxed{\textbf{(E)}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AHSME 50p box|year=1959|num-b=27|num-a=29}}
 
{{AHSME 50p box|year=1959|num-b=27|num-a=29}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
[[Category:Introductory Geometry Problems]]

Latest revision as of 14:24, 21 July 2024

Problem 28

In triangle $ABC$, $AL$ bisects angle $A$, and $CM$ bisects angle $C$. Points $L$ and $M$ are on $BC$ and $AB$, respectively. The sides of $\triangle ABC$ are $a$, $b$, and $c$. Then $\frac{AM}{MB}=k\frac{CL}{LB}$ where $k$ is: $\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a}$

Solution

[asy]  import geometry;  point A = (0,0); point B = (3,4); point C = (8,0); point L,M;  // Triangle ABC draw(A--B--C--A); dot(A); label("A",A,SW); dot(B); label("B",B,NW); dot(C); label("C",C,SE);  // Angle Bisectors pair[] l = intersectionpoints(bisector(line(A,B),line(A,C)),B--C); L = l[0]; dot(L); label("L",L,NE); draw(A--L);  markscalefactor = 0.15; draw(anglemark(L,A,B)); markscalefactor = 0.17; draw(anglemark(C,A,L)); markscalefactor = 0.18; draw(anglemark(L,A,B)); markscalefactor = 0.2; draw(anglemark(C,A,L));  pair[] m = intersectionpoints(bisector(line(B,C), line(A,C)), A--B); M = m[0]; dot(M); label("M",M,NW); draw(C--M);  markscalefactor = 0.15; draw(anglemark(M,C,A)); markscalefactor = 0.17; draw(anglemark(B,C,M));  // Length Labels label("$a$", midpoint(B--C), (5,5)); label("$b$", midpoint(A--C), S); label("$c$", midpoint(A--B), (-5,5));  [/asy]

By the Angle Bisector Theorem, $\frac{AM}{AB}=\frac{AC}{BC}$ and $\frac{CL}{LB}=\frac{AC}{AB}$, so by rearranging the given equation and noting $AB=c$ and $BC=a$, $k=\frac{c}{a}\rightarrow\boxed{\textbf{(E)}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 27
Followed by
Problem 29
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png