Difference between revisions of "1959 AHSME Problems/Problem 28"
m (formatted fractions) |
m (formatting fix) |
||
Line 4: | Line 4: | ||
<math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a} </math> | <math>\textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac{bc}{a^2}\qquad\textbf{(C)}\ \frac{a^2}{bc}\qquad\textbf{(D)}\ \frac{c}{b}\qquad\textbf{(E)}\ \frac{c}{a} </math> | ||
== Solution == | == Solution == | ||
− | By the angle bisector theorem, <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=c | + | By the angle bisector theorem, <math>\frac{AM}{AB}=\frac{AC}{BC}</math> and <math>\frac{CL}{LB}=\frac{AC}{AB}</math>, so by rearranging the given equation and noting <math>AB=c</math> and <math>BC=a</math>, <math>k=\frac{c}{a}\rightarrow\boxed{\textbf{E}}</math>. |
== See also == | == See also == | ||
{{AHSME 50p box|year=1959|num-b=27|num-a=29}} | {{AHSME 50p box|year=1959|num-b=27|num-a=29}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 13:55, 21 July 2024
Problem 28
In triangle , bisects angle , and bisects angle . Points and are on and , respectively. The sides of are , , and . Then where is:
Solution
By the angle bisector theorem, and , so by rearranging the given equation and noting and , .
See also
1959 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 27 |
Followed by Problem 29 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.