Difference between revisions of "1959 AHSME Problems/Problem 2"

(Added Problem, Solution, and See Also)
 
m (category)
 
(2 intermediate revisions by the same user not shown)
Line 7: Line 7:
  
 
==Solution==
 
==Solution==
<math>\boxed{\textbf{D}}</math>
 
  
 +
<asy>
 +
 +
import geometry;
 +
 +
point A=(0,0);
 +
point B=(10,0);
 +
point C=(4,6);
 +
point P=(3,6(-sqrt(2)/2+1));
 +
point D,E;
 +
 +
// Triangle ABC
 +
draw(A--B--C--A);
 +
dot(A);
 +
label("A",A,SW);
 +
dot(B);
 +
label("B",B,SE);
 +
dot(C);
 +
label("C",C,NW);
 +
 +
// Point P and triangle CDE
 +
dot(P);
 +
label("P",P,N);
 +
 +
pair[] d=intersectionpoints(parallel(P,line(A,B)),(B--C));
 +
D=d[0];
 +
dot(D);
 +
label("D",D,NE);
 +
 +
pair[] e=intersectionpoints(parallel(P,line(A,B)),(A--C));
 +
E=e[0];
 +
dot(E);
 +
label("E",E,NW);
 +
 +
draw(D--E);
 +
 +
</asy>
 +
 +
Because <math>[ABDE]=[\triangle EDC]</math>, we know that <math>[\triangle EDC]=\frac{1}{2}[\triangle ABC]</math>. Because the ratio of their areas is <math>\frac{1}{2}</math>, we know that the ratio of their side lengths (and thus their altitudes) is <math>\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}</math>. Thus, the altitude from <math>C</math> to <math>\overline{DE}</math> has length <math>1*\frac{\sqrt2}{2}=\frac{\sqrt{2}}{2}</math>. Thus, because <math>\overline{DE} \parallel \overline{AB}</math>, the distance from <math>P</math> to <math>\overline{AB}</math> is <math>1-\frac{\sqrt{2}}{2}=\boxed{\textbf{(D) }\frac{2-\sqrt{2}}{2}}</math>.
  
 
== See also ==
 
== See also ==
 
{{AHSME 50p box|year=1959|num-b=1|num-a=3}}
 
{{AHSME 50p box|year=1959|num-b=1|num-a=3}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
[[Category:Introductory Geometry Problems]]

Latest revision as of 10:59, 21 July 2024

Problem 2

Through a point $P$ inside the $\triangle ABC$ a line is drawn parallel to the base $AB$, dividing the triangle into two equal areas. If the altitude to $AB$ has a length of $1$, then the distance from $P$ to $AB$ is:

$\textbf{(A)}\ \frac12 \qquad\textbf{(B)}\ \frac14\qquad\textbf{(C)}\ 2-\sqrt2\qquad\textbf{(D)}\ \frac{2-\sqrt2}{2}\qquad\textbf{(E)}\ \frac{2+\sqrt2}{8}$


Solution

[asy]  import geometry;  point A=(0,0); point B=(10,0); point C=(4,6); point P=(3,6(-sqrt(2)/2+1)); point D,E;  // Triangle ABC draw(A--B--C--A); dot(A); label("A",A,SW); dot(B); label("B",B,SE); dot(C); label("C",C,NW);  // Point P and triangle CDE dot(P); label("P",P,N);  pair[] d=intersectionpoints(parallel(P,line(A,B)),(B--C)); D=d[0]; dot(D); label("D",D,NE);  pair[] e=intersectionpoints(parallel(P,line(A,B)),(A--C)); E=e[0]; dot(E); label("E",E,NW);  draw(D--E);  [/asy]

Because $[ABDE]=[\triangle EDC]$, we know that $[\triangle EDC]=\frac{1}{2}[\triangle ABC]$. Because the ratio of their areas is $\frac{1}{2}$, we know that the ratio of their side lengths (and thus their altitudes) is $\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}$. Thus, the altitude from $C$ to $\overline{DE}$ has length $1*\frac{\sqrt2}{2}=\frac{\sqrt{2}}{2}$. Thus, because $\overline{DE} \parallel \overline{AB}$, the distance from $P$ to $\overline{AB}$ is $1-\frac{\sqrt{2}}{2}=\boxed{\textbf{(D) }\frac{2-\sqrt{2}}{2}}$.

See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png