Difference between revisions of "1959 AHSME Problems/Problem 32"

m (fixed typo)
m (fixed typo)
Line 1: Line 1:
== Problem =
+
== Problem ==
 
The length <math>l</math> of a tangent, drawn from a point <math>A</math> to a circle, is <math>\frac43 </math> of the radius <math>r</math>. The (shortest) distance from A to the circle is:
 
The length <math>l</math> of a tangent, drawn from a point <math>A</math> to a circle, is <math>\frac43 </math> of the radius <math>r</math>. The (shortest) distance from A to the circle is:
 
<math>\textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.} </math>
 
<math>\textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.} </math>

Revision as of 19:32, 20 July 2024

Problem

The length $l$ of a tangent, drawn from a point $A$ to a circle, is $\frac43$ of the radius $r$. The (shortest) distance from A to the circle is: $\textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.}$

Solution

$\fbox{C}$


See also

1959 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 31
Followed by
Problem 33
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png