Difference between revisions of "1959 AHSME Problems/Problem 31"
(created solution page) |
(diagram) |
||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
+ | |||
+ | <asy> | ||
+ | |||
+ | import geometry; | ||
+ | |||
+ | point O=(0,0); | ||
+ | real r=5*sqrt(2); | ||
+ | point A=(-r/sqrt(5),2r/sqrt(5)); | ||
+ | point B=(-r/sqrt(5),0); | ||
+ | point C=(5,5); | ||
+ | point D=-C; | ||
+ | |||
+ | markscalefactor=0.1; | ||
+ | |||
+ | dot(O); | ||
+ | label("O",O,S); | ||
+ | |||
+ | // Circle with diameter | ||
+ | draw(circle(O,r)); | ||
+ | draw((-r,0)--(r,0)); | ||
+ | |||
+ | // Small square | ||
+ | draw((-r/sqrt(5),2r/sqrt(5))--(-r/sqrt(5),0)--(r/sqrt(5),0)--(r/sqrt(5),2r/sqrt(5))--(-r/sqrt(5),2r/sqrt(5))); | ||
+ | dot(A); | ||
+ | label("A",A,NW); | ||
+ | dot(B); | ||
+ | label("B",B,SW); | ||
+ | draw(O--A); | ||
+ | draw(rightanglemark(A,B,O)); | ||
+ | |||
+ | // Big Square | ||
+ | draw((5,5)--(5,-5)--(-5,-5)--(-5,5)--(5,5)); | ||
+ | dot(C); | ||
+ | label("C",C,NE); | ||
+ | dot(D); | ||
+ | label("D",D,SW); | ||
+ | draw(C--D); | ||
+ | |||
+ | </asy> | ||
+ | |||
<math>\fbox{B}</math> | <math>\fbox{B}</math> | ||
Revision as of 19:16, 20 July 2024
Problem
A square, with an area of , is inscribed in a semicircle. The area of a square that could be inscribed in the entire circle with the same radius, is:
Solution
See also
1959 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 30 |
Followed by Problem 32 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.