Difference between revisions of "1965 AHSME Problems/Problem 36"

(created solution page)
 
(diagram)
Line 14: Line 14:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
point O=(0,0);
 +
point A=(10,10);
 +
point B=(10,0);
 +
point C;
 +
line OA=line(O,A);
 +
line OB=line(O,B);
 +
 +
// Lines OA and OB
 +
draw(OA);
 +
draw(OB);
 +
 +
// Points O, A, and B
 +
dot(O);
 +
label("O",O,S);
 +
dot(A);
 +
label("A",A,NW);
 +
dot(B);
 +
label("B",B,S);
 +
 +
// Segments AB and BC
 +
draw(A--B);
 +
pair[] x=intersectionpoints(perpendicular(B,OA),(O--A));
 +
C=x[0];
 +
dot(C);
 +
label("C", C, NW);
 +
draw(B--C);
 +
 +
// Right Angle Markers
 +
markscalefactor=0.1;
 +
draw(rightanglemark(O,B,A));
 +
draw(rightanglemark(B,C,O));
 +
 +
// Length Labels
 +
label("$a$", midpoint(A--B), E);
 +
label("$b$", midpoint(B--C), NE);
 +
 +
</asy>
 +
 
<math>\fbox{E}</math>
 
<math>\fbox{E}</math>
  

Revision as of 17:26, 19 July 2024

Problem

Given distinct straight lines $OA$ and $OB$. From a point in $OA$ a perpendicular is drawn to $OB$; from the foot of this perpendicular a line is drawn perpendicular to $OA$. From the foot of this second perpendicular a line is drawn perpendicular to $OB$; and so on indefinitely. The lengths of the first and second perpendiculars are $a$ and $b$, respectively. Then the sum of the lengths of the perpendiculars approaches a limit as the number of perpendiculars grows beyond all bounds. This limit is:

$\textbf{(A)}\ \frac {b}{a - b} \qquad  \textbf{(B) }\ \frac {a}{a - b} \qquad  \textbf{(C) }\ \frac {ab}{a - b} \qquad  \textbf{(D) }\ \frac{b^2}{a-b}\qquad \textbf{(E) }\ \frac{a^2}{a-b}$

Solution

[asy]  import geometry; point O=(0,0); point A=(10,10); point B=(10,0); point C; line OA=line(O,A); line OB=line(O,B);  // Lines OA and OB draw(OA); draw(OB);  // Points O, A, and B dot(O); label("O",O,S); dot(A); label("A",A,NW); dot(B); label("B",B,S);  // Segments AB and BC draw(A--B); pair[] x=intersectionpoints(perpendicular(B,OA),(O--A)); C=x[0]; dot(C); label("C", C, NW); draw(B--C);  // Right Angle Markers markscalefactor=0.1; draw(rightanglemark(O,B,A)); draw(rightanglemark(B,C,O));  // Length Labels label("$a$", midpoint(A--B), E); label("$b$", midpoint(B--C), NE);  [/asy]

$\fbox{E}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 35
Followed by
Problem 37
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png