Difference between revisions of "2002 AMC 12A Problems/Problem 6"

 
(16 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{duplicate|[[2002 AMC 12A Problems|2009 AMC 12A #6]] and [[2002 AMC 10A Problems|2009 AMC 10A #4]]}}
+
{{duplicate|[[2002 AMC 12A Problems|2002 AMC 12A #6]] and [[2002 AMC 10A Problems|2002 AMC 10A #4]]}}
  
 
==Problem==
 
==Problem==
 
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>?
 
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>?
  
<math> \mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ }</math> infinitely many
+
<math> \textbf{(A) } 4\qquad \textbf{(B) } 6\qquad \textbf{(C) } 9\qquad \textbf{(D) } 12\qquad \textbf{(E) } \text{infinitely many} </math>
  
 +
==Solution 1 ==
  
==Solution==
+
For any <math>m</math> we can pick <math>n=1</math>, we get <math>m \cdot 1 \le m + 1</math>,
 +
therefore the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>.
 +
 
 +
==Solution 2 ==
 +
 
 +
Another solution, slightly similar to this first one would be using [[Simon's Favorite Factoring Trick]].
 +
 
 +
<math>(m-1)(n-1) \leq 1</math>
 +
 
 +
Let <math>n=1</math>, then
 +
 
 +
<math>0 \leq 1</math>
 +
 
 +
This means that there are infinitely many numbers <math>m</math> that can satisfy the inequality. So the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>.
 +
 
 +
==Solution 3 ==
 +
 
 +
If we subtract <math>n</math> from both sides of the equation, we get <math>m \cdot n - n \le m</math>. Factor the left side to get <math>(m - 1)(n) \le m</math>. Divide both sides by <math>(m-1)</math> and we get <math> n \le \frac {m}{m-1}</math>. The fraction <math>\frac {m}{m-1} > 1</math> if <math>m > 1</math>. There is an infinite amount of integers greater than <math>1</math>, therefore the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>.
 +
 
 +
==Video Solution by Daily Dose of Math==
  
For any <math>m</math> we can pick <math>n=1</math>, we get <math>m \cdot 1 \le m + 1</math>,
+
https://youtu.be/fo4oSDca-6c
therefore the answer is <math>\boxed{\text{(E) infinitely many}}</math>.
+
 
 +
~Thesmartgreekmathdude
  
 
==See Also==
 
==See Also==
Line 18: Line 39:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:44, 18 July 2024

The following problem is from both the 2002 AMC 12A #6 and 2002 AMC 10A #4, so both problems redirect to this page.

Problem

For how many positive integers $m$ does there exist at least one positive integer n such that $m \cdot n \le m + n$?

$\textbf{(A) } 4\qquad \textbf{(B) } 6\qquad \textbf{(C) } 9\qquad \textbf{(D) } 12\qquad \textbf{(E) } \text{infinitely many}$

Solution 1

For any $m$ we can pick $n=1$, we get $m \cdot 1 \le m + 1$, therefore the answer is $\boxed{\textbf{(E) } \text{infinitely many}}$.

Solution 2

Another solution, slightly similar to this first one would be using Simon's Favorite Factoring Trick.

$(m-1)(n-1) \leq 1$

Let $n=1$, then

$0 \leq 1$

This means that there are infinitely many numbers $m$ that can satisfy the inequality. So the answer is $\boxed{\textbf{(E) } \text{infinitely many}}$.

Solution 3

If we subtract $n$ from both sides of the equation, we get $m \cdot n - n \le m$. Factor the left side to get $(m - 1)(n) \le m$. Divide both sides by $(m-1)$ and we get $n \le \frac {m}{m-1}$. The fraction $\frac {m}{m-1} > 1$ if $m > 1$. There is an infinite amount of integers greater than $1$, therefore the answer is $\boxed{\textbf{(E) } \text{infinitely many}}$.

Video Solution by Daily Dose of Math

https://youtu.be/fo4oSDca-6c

~Thesmartgreekmathdude

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png