Difference between revisions of "2011 AMC 8 Problems/Problem 22"

(Solution 2)
(Video Solution by WhyMath)
 
(36 intermediate revisions by 16 users not shown)
Line 5: Line 5:
  
 
==Solution 1==
 
==Solution 1==
The first couple powers of <math>7</math> are <math>7, 49, 343, 2401, 16807.</math> As you can see, the last two digits cycle after every 4 powers. <math>7^{1}\ (\text{mod }100) \equiv 7^{5}\ (\text{mod }100) \equiv 7^{2009}\ (\text{mod }100).</math> From there, we go two more powers. The last two digits are <math>43</math> so the tens digit is <math>\boxed{\textbf{(D)}\ 4}</math>
+
Since we want the tens digit, we can find the last two digits of <math>7^{2011}</math>.  We can do this by using modular arithmetic.
==Solution 2==
+
<cmath>7^1\equiv 07 \pmod{100}.</cmath>
We want the tens digit
+
<cmath>7^2\equiv 49 \pmod{100}.</cmath>
So, we take <math>7^{2011}\ (\text{mod }100)</math>. That is congruent to <math>7^{11}\ (\text{mod}100)</math>. From here, it is an easy bash, 7, 49, 43, 01, 07, 49, 43, 01, 07, 49, 43. So the answer is 4
+
<cmath>7^3\equiv 43 \pmod{100}.</cmath>
 +
<cmath>7^4\equiv 01 \pmod{100}.</cmath>
 +
We can write <math>7^{2011}</math> as <math>(7^4)^{502}\times 7^3</math>.  Using this, we can say:
 +
<cmath>7^{2011}\equiv (7^4)^{502}\times 7^3\equiv 7^3\equiv 343\equiv 43\pmod{100}.</cmath>
 +
From the above, we can conclude that the last two digits of <math>7^{2011}</math> are 43.  Since they have asked us to find the tens digit, our answer is <math>\boxed{\textbf{(D)}\ 4}</math>.
 +
 
 +
-Ilovefruits
 +
 
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/7an5wU9Q5hk?t=1710
 +
 
 +
==Video Solution==
 +
https://youtu.be/lxtYmUzQQ8w  ~David
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2011|num-b=21|num-a=23}}
 
{{AMC8 box|year=2011|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:34, 15 July 2024

Problem

What is the tens digit of $7^{2011}$?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }7$

Solution 1

Since we want the tens digit, we can find the last two digits of $7^{2011}$. We can do this by using modular arithmetic. \[7^1\equiv 07 \pmod{100}.\] \[7^2\equiv 49 \pmod{100}.\] \[7^3\equiv 43 \pmod{100}.\] \[7^4\equiv 01 \pmod{100}.\] We can write $7^{2011}$ as $(7^4)^{502}\times 7^3$. Using this, we can say: \[7^{2011}\equiv (7^4)^{502}\times 7^3\equiv 7^3\equiv 343\equiv 43\pmod{100}.\] From the above, we can conclude that the last two digits of $7^{2011}$ are 43. Since they have asked us to find the tens digit, our answer is $\boxed{\textbf{(D)}\ 4}$.

-Ilovefruits

Video Solution by OmegaLearn

https://youtu.be/7an5wU9Q5hk?t=1710

Video Solution

https://youtu.be/lxtYmUzQQ8w ~David

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png