Difference between revisions of "1993 AIME Problems/Problem 6"
m (→Solution) |
Michaellin16 (talk | contribs) (→Solution 6) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 33: | Line 33: | ||
First note that the integer clearly must be divisible by <math>9</math> and <math>11</math> since we can use the "let the middle number be x" trick. Let the number be <math>99k</math> for some integer <math>k.</math> Now let the <math>10</math> numbers be <math>x,x+1, \cdots x+9.</math> We have <math>10x+45 = 99k.</math> Taking mod <math>5</math> yields <math>k \equiv 0 \pmod{5}.</math> Since <math>k</math> is positive, we take <math>k=5</math> thus obtaining <math>99 \cdot 5 = \boxed{495}</math> as our answer. | First note that the integer clearly must be divisible by <math>9</math> and <math>11</math> since we can use the "let the middle number be x" trick. Let the number be <math>99k</math> for some integer <math>k.</math> Now let the <math>10</math> numbers be <math>x,x+1, \cdots x+9.</math> We have <math>10x+45 = 99k.</math> Taking mod <math>5</math> yields <math>k \equiv 0 \pmod{5}.</math> Since <math>k</math> is positive, we take <math>k=5</math> thus obtaining <math>99 \cdot 5 = \boxed{495}</math> as our answer. | ||
+ | |||
+ | |||
+ | |||
+ | === Solution 6 === | ||
+ | |||
+ | |||
+ | From the first equation solution 1, we get the three part equation 9x=10y+9=11z+19 after subtracting 36 from each of the equations 9x+36=10y+45=11z+55 knowing that the integer we are looking for has a last digit of 9 from the second part of our first equation, and also knowing that our mystery number must be 19 more the a multiple of 11 that ends in 0, the only way this could happen is if the number is able to be deduced in the form 110a+19, where a is between the range 1-9, inclusive. | ||
+ | so, also knowing our mystery number is divisible by 9, our only answer being 129,239,349,459 ... etc. until 899. Brushing through our act of casework for this problem shows that the answer is 459... but we are not done yet! We have to add the 36 we subtracted at the beggining of our solution to get the equation 459+36, which is equal to our final answer... 495!!! | ||
+ | <math>michaellin16</math> | ||
== See also == | == See also == | ||
{{AIME box|year=1993|num-b=5|num-a=7}} | {{AIME box|year=1993|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 17:07, 12 July 2024
Contents
Problem
What is the smallest positive integer that can be expressed as the sum of nine consecutive integers, the sum of ten consecutive integers, and the sum of eleven consecutive integers?
Solutions
Solution 1
Denote the first of each of the series of consecutive integers as . Therefore, . Simplifying, . The relationship between suggests that is divisible by . Also, , so is divisible by . We find that the least possible value of , so the answer is .
Solution 2
Let the desired integer be . From the information given, it can be determined that, for positive integers :
This can be rewritten as the following congruences:
Since 9 and 11 are relatively prime, n is a multiple of 99. It can then easily be determined that the smallest multiple of 99 with a units digit 5 (this can be interpreted from the 2nd congruence) is
Solution 3
Let be the desired integer. From the given information, we have here, and are the middle terms of the sequence of 9 and 11 numbers, respectively. Similarly, we have as the 4th term of the sequence. Since, is a multiple of and it is also a multiple of Hence, for some So, we have It follows that is the smallest integer that can be represented in such a way.
Solution 4
By the method in Solution 1, we find that the number can be written as for some integers . From this, we can see that must be divisible by 9, 5, and 11. This means must be divisible by 495. The only multiples of 495 that are small enough to be AIME answers are 495 and 990. From the second of the three expressions above, we can see that cannot be divisible by 10, so must equal . Solution by Zeroman.
Solution 5
First note that the integer clearly must be divisible by and since we can use the "let the middle number be x" trick. Let the number be for some integer Now let the numbers be We have Taking mod yields Since is positive, we take thus obtaining as our answer.
Solution 6
From the first equation solution 1, we get the three part equation 9x=10y+9=11z+19 after subtracting 36 from each of the equations 9x+36=10y+45=11z+55 knowing that the integer we are looking for has a last digit of 9 from the second part of our first equation, and also knowing that our mystery number must be 19 more the a multiple of 11 that ends in 0, the only way this could happen is if the number is able to be deduced in the form 110a+19, where a is between the range 1-9, inclusive. so, also knowing our mystery number is divisible by 9, our only answer being 129,239,349,459 ... etc. until 899. Brushing through our act of casework for this problem shows that the answer is 459... but we are not done yet! We have to add the 36 we subtracted at the beggining of our solution to get the equation 459+36, which is equal to our final answer... 495!!!
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.