Difference between revisions of "1995 IMO Problems/Problem 4"
Alapan1729 (talk | contribs) |
m |
||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | The positive real numbers <math>x_0, x_1, x_2, | + | ==Problem== |
+ | |||
+ | The positive real numbers <math>x_0, x_1, x_2,.....x_{1994}, x_{1995}</math> satisfy the relations | ||
<math>x_0=x_{1995}</math> and <math>x_{i-1}+\frac{2}{x_{i-1}}=2{x_i}+\frac{1}{x_i}</math> | <math>x_0=x_{1995}</math> and <math>x_{i-1}+\frac{2}{x_{i-1}}=2{x_i}+\frac{1}{x_i}</math> | ||
Line 6: | Line 8: | ||
Find the maximum value that <math>x_0</math> can have. | Find the maximum value that <math>x_0</math> can have. | ||
+ | |||
+ | ==Solution== | ||
+ | First we start by solving for <math>x_{i}</math> in the recursive relation | ||
+ | |||
+ | <math>x_{i-1}+\frac{2}{x_{i-1}}=2x_{i}+\frac{1}{x_{i}}</math> | ||
+ | |||
+ | <math>\frac{x_{i-1}^{2}+2}{x_{i-1}}=\frac{2x_{i}^{2}+1}{x_{i}}</math> | ||
+ | |||
+ | <math>\left( x_{i} \right)\left( x_{i-1}^{2}+2 \right)=\left( x_{i-1} \right)\left( 2x_{i}^{2}+1 \right)</math> | ||
+ | |||
+ | <math>x_{i}x_{i-1}^{2}+2x_{i}=2x_{i-1}x_{i}^{2}+x_{i-1}</math> | ||
+ | |||
+ | <math>x_{i}x_{i-1}^{2}-2x_{i-1}x_{i}^{2}+2x_{i}-x_{i-1}=0</math> | ||
+ | |||
+ | <math>x_{i}x_{i-1}\left( x_{i-1} \right)-2x_{i}x_{i-1}\left( x_{i} \right)+2x_{i}-x_{i-1}=0</math> | ||
+ | |||
+ | <math>x_{i}x_{i-1}\left( x_{i-1} -2x_{i}\right)+2x_{i}-x_{i-1}=0</math> | ||
+ | |||
+ | <math>\left( 2x_{i}-x_{i-1}\right)\left( 1-x_{i}x_{i-1} \right)=0</math> | ||
+ | |||
+ | <math>x_{i}=\frac{x_{i-1}}{2},\;</math> or <math>x_{i}=\frac{1}{x_{i-1}}</math> | ||
+ | |||
+ | So we have two recursive properties to chose from. | ||
+ | |||
+ | If we want to maximize <math>x_{0}</math> then we can use <math>x_{i}=\frac{x_{i-1}}{2}</math> from <math>i=1</math> to <math>1994</math>. This will make <math>x_{0}</math> the largest and <math>x_{1994}</math> the smallest. | ||
+ | |||
+ | Then we can simply use <math>x_{i}=\frac{1}{x_{i-1}}</math> to get <math>x_{1995}</math> since the reciprocal will make it very large. | ||
+ | |||
+ | Then we use <math>x_{0}=x_{1995}</math> and solve for <math>x_{0}</math> | ||
+ | |||
+ | This means that we can write <math>x_{i}</math> as: | ||
+ | |||
+ | <math>x_{i}=\begin{cases} \frac{x_{0}}{2^{i}} & 1 \le i \le 1994 \\ \frac{1}{x_{i-1}} & i=1995\end{cases}</math> | ||
+ | |||
+ | Then <math>x_{1994}=\frac{x_0}{2^{1994}}</math>, | ||
+ | |||
+ | thus <math>x_{1995}=\frac{1}{x_{1994}}=\frac{2^{1994}}{x_0}={x_0}</math> | ||
+ | |||
+ | Solving for <math>{x_0}</math> we get: | ||
+ | |||
+ | <math>{x_0}^{2}=2^{1994}</math> | ||
+ | |||
+ | <math>{x_0}=\pm\sqrt{2^{1994}}=\pm2^{997}</math>. Since all <math>{x_i}</math> are defined as positive, <math>{x_0}=2^{997}</math>. | ||
+ | |||
+ | Therefore, the maximum value that <math>x_0</math> can have is <math>{x_0}=2^{997}</math> | ||
+ | |||
+ | ~ Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
+ | |||
+ | |||
+ | {{alternate solutions}} | ||
+ | |||
+ | |||
+ | == See Also == | ||
+ | {{IMO box|year=1995|num-b=3|num-a=5}} |
Latest revision as of 20:24, 4 July 2024
Problem
The positive real numbers satisfy the relations
and
for
Find the maximum value that can have.
Solution
First we start by solving for in the recursive relation
or
So we have two recursive properties to chose from.
If we want to maximize then we can use from to . This will make the largest and the smallest.
Then we can simply use to get since the reciprocal will make it very large.
Then we use and solve for
This means that we can write as:
Then ,
thus
Solving for we get:
. Since all are defined as positive, .
Therefore, the maximum value that can have is
~ Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1995 IMO (Problems) • Resources | ||
Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 5 |
All IMO Problems and Solutions |