Difference between revisions of "2009 IMO Problems/Problem 4"

(Created page with '== Problem == Let <math>ABC</math> be a triangle with <math>AB=AC</math>. The angle bisectors of <math>\angle CAB</math> and <math>\angle BAC</math> meet the sides <math>BC</mat…')
 
(Problem)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Let <math>ABC</math> be a triangle with <math>AB=AC</math>. The angle bisectors of <math>\angle CAB</math> and <math>\angle BAC</math> meet the sides <math>BC</math> and <math>CA</math> at <math>D</math> and <math>E</math>, respectively. Let <math>K</math> be the incentre of triangle <math>ADC</math>. Suppose that <math>\angle BEK=45^\circ</math>. Find all possible values of <math>\angle CAB</math>.  
+
Let <math>ABC</math> be a triangle with <math>AB=AC</math>. The angle bisectors of <math>\angle CAB</math> and <math>\angle ABC</math> meet the sides <math>BC</math> and <math>CA</math> at <math>D</math> and <math>E</math>, respectively. Let <math>K</math> be the incenter of triangle <math>ADC</math>. Suppose that <math>\angle BEK=45^\circ</math>. Find all possible values of <math>\angle CAB</math>.  
  
 
''Authors: Jan Vonk and Peter Vandendriessche, Belgium, and Hojoo Lee, South Korea''
 
''Authors: Jan Vonk and Peter Vandendriessche, Belgium, and Hojoo Lee, South Korea''
  
--[[User:Bugi|Bugi]] 10:27, 23 July 2009 (UTC)Bugi
+
==Solution==
 +
{{solution}}
 +
 
 +
==See Also==
 +
 
 +
{{IMO box|year=2009|num-b=3|num-a=5}}

Latest revision as of 11:53, 30 June 2024

Problem

Let $ABC$ be a triangle with $AB=AC$. The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the sides $BC$ and $CA$ at $D$ and $E$, respectively. Let $K$ be the incenter of triangle $ADC$. Suppose that $\angle BEK=45^\circ$. Find all possible values of $\angle CAB$.

Authors: Jan Vonk and Peter Vandendriessche, Belgium, and Hojoo Lee, South Korea

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2009 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions