Difference between revisions of "2016 AMC 8 Problems/Problem 10"

(Solution 2)
(Video Solution (CREATIVE THINKING!!!))
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
Suppose that <math>a * b</math> means <math>3a-b.</math> What is the value of <math>x</math> if
 
Suppose that <math>a * b</math> means <math>3a-b.</math> What is the value of <math>x</math> if
 
<cmath>2 * (5 * x)=1</cmath>
 
<cmath>2 * (5 * x)=1</cmath>
 
<math>\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14</math>
 
<math>\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14</math>
  
==Solution==
+
 
 +
==Solution 1==
 
Let us plug in <math>(5 * x)=1</math> into <math>3a-b</math>. Thus it would be <math>3(5)-x</math>. Now we have <math>2*(15-x)=1</math>. Plugging <math>2*(15-x)</math> into <math>3a-b</math>, we have <math>6-15+x=1</math>. Solving for <math>x</math> we have <cmath>-9+x=1</cmath><cmath>x=\boxed{\textbf{(D)}  \,        10}</cmath>
 
Let us plug in <math>(5 * x)=1</math> into <math>3a-b</math>. Thus it would be <math>3(5)-x</math>. Now we have <math>2*(15-x)=1</math>. Plugging <math>2*(15-x)</math> into <math>3a-b</math>, we have <math>6-15+x=1</math>. Solving for <math>x</math> we have <cmath>-9+x=1</cmath><cmath>x=\boxed{\textbf{(D)}  \,        10}</cmath>
  
 
==Solution 2==
 
==Solution 2==
 
Let us set a variable <math>y</math> equal to <math>5 * x</math>. Solving for y in the equation <math>3(2)-y=1</math>, we see that y is equal to five. By substitution, we see that <math>5 * x</math> = 5. Solving for x in the equation <math>5(3)-x = 5</math> we get <cmath>x=\boxed{\textbf{(D)}  \,        10}</cmath>
 
Let us set a variable <math>y</math> equal to <math>5 * x</math>. Solving for y in the equation <math>3(2)-y=1</math>, we see that y is equal to five. By substitution, we see that <math>5 * x</math> = 5. Solving for x in the equation <math>5(3)-x = 5</math> we get <cmath>x=\boxed{\textbf{(D)}  \,        10}</cmath>
 +
 +
==Video Solution==
 +
 +
https://youtu.be/cR1GDMq1Cv4?si=KktuZcPdJxqC83rg
 +
 +
A solution so simple that a 12-year-old made it!
 +
 +
~Elijahman~
 +
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/0FhGMy0mCVU
 +
 +
~Education, the Study of Everything
 +
 +
==Video Solution==
 +
https://youtu.be/ysYNhG_uG-I
 +
 +
~savannahsolver
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/TkZvMa30Juo?t=638
 +
 +
~pi_is_3.14
 +
 +
==See Also==
 
{{AMC8 box|year=2016|num-b=9|num-a=11}}
 
{{AMC8 box|year=2016|num-b=9|num-a=11}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 10:52, 20 June 2024

Problem

Suppose that $a * b$ means $3a-b.$ What is the value of $x$ if \[2 * (5 * x)=1\] $\textbf{(A) }\frac{1}{10} \qquad\textbf{(B) }2\qquad\textbf{(C) }\frac{10}{3} \qquad\textbf{(D) }10\qquad \textbf{(E) }14$


Solution 1

Let us plug in $(5 * x)=1$ into $3a-b$. Thus it would be $3(5)-x$. Now we have $2*(15-x)=1$. Plugging $2*(15-x)$ into $3a-b$, we have $6-15+x=1$. Solving for $x$ we have \[-9+x=1\]\[x=\boxed{\textbf{(D)}   \,        10}\]

Solution 2

Let us set a variable $y$ equal to $5 * x$. Solving for y in the equation $3(2)-y=1$, we see that y is equal to five. By substitution, we see that $5 * x$ = 5. Solving for x in the equation $5(3)-x = 5$ we get \[x=\boxed{\textbf{(D)}   \,        10}\]

Video Solution

https://youtu.be/cR1GDMq1Cv4?si=KktuZcPdJxqC83rg

A solution so simple that a 12-year-old made it!

~Elijahman~

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/0FhGMy0mCVU

~Education, the Study of Everything

Video Solution

https://youtu.be/ysYNhG_uG-I

~savannahsolver

Video Solution by OmegaLearn

https://youtu.be/TkZvMa30Juo?t=638

~pi_is_3.14

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png