Difference between revisions of "1957 AHSME Problems/Problem 42"
Hastapasta (talk | contribs) |
m (→Solution) |
||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
− | We first use the fact that <math>i^{-n}=\frac1{i^n}=\left(\frac1i\right)^n=(-i)^n</math>. Note that <math>i^4=1</math> and <math>(-i)^4=1</math>, so <math>i^n</math> and <math>(-i)^n</math> | + | We first use the fact that <math>i^{-n}=\frac1{i^n}=\left(\frac1i\right)^n=(-i)^n</math>. Note that <math>i^4=1</math> and <math>(-i)^4=1</math>, so <math>i^n</math> and <math>(-i)^n</math> are periodic with periods at most 4. Therefore, it suffices to check for <math>n=0,1,2,3</math>. |
Revision as of 13:47, 10 June 2024
Problem 42
If , where and is an integer, then the total number of possible distinct values for is:
Solution
We first use the fact that . Note that and , so and are periodic with periods at most 4. Therefore, it suffices to check for .
For , we have .
For , we have .
For , we have .
For , we have .
Hence, the answer is .
Solution 2
Notice that the powers of cycle in cycles of 4. So let's see if is periodic.
For : we have .
For : we have .
For : we have .
For : we have .
For : we have again. Well, it can be seen that cycles in periods of 4. Select .
~hastapasta