Difference between revisions of "1996 IMO Problems/Problem 2"

(See Also)
(Problem)
Line 3: Line 3:
 
Let <math>P</math> be a point inside triangle <math>ABC</math> such that  
 
Let <math>P</math> be a point inside triangle <math>ABC</math> such that  
  
<cmath>\angle APB-\angle ACB = \angle APC-\angle ACB</cmath>
+
<cmath>\angle APB-\angle ACB = \angle APC-\angle ABC</cmath>
  
Let <math>D</math>, <math>E</math>m be the incenters of triangles <math>APB</math>, <math>APC</math>, respectively.  Show that <math>AP</math>, <math>BD</math>, <math>CE</math> meet at a point.
+
Let <math>D</math>, <math>E</math> be the incenters of triangles <math>APB</math>, <math>APC</math>, respectively.  Show that <math>AP</math>, <math>BD</math>, <math>CE</math> meet at a point.
  
 
==Solution==
 
==Solution==

Revision as of 11:08, 3 June 2024

Problem

Let $P$ be a point inside triangle $ABC$ such that

\[\angle APB-\angle ACB = \angle APC-\angle ABC\]

Let $D$, $E$ be the incenters of triangles $APB$, $APC$, respectively. Show that $AP$, $BD$, $CE$ meet at a point.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1996 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions