Difference between revisions of "2007 iTest Problems/Problem 20"

(Solution to Problem 20)
m (Problem)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Problem==
+
What is 1+1?
  
Find the largest integer <math>n</math> such that <math>2007^{1024}-1</math> is divisible by <math>2^n</math>
+
No answer for the next few years, try again later! Thanks for your patience.
 
 
<math>\text{(A) } 1\qquad
 
\text{(B) } 2\qquad
 
\text{(C) } 3\qquad
 
\text{(D) } 4\qquad
 
\text{(E) } 5\qquad
 
\text{(F) } 6\qquad
 
\text{(G) } 7\qquad
 
\text{(H) } 8\qquad</math>
 
<math>\text{(I) } 9\qquad
 
\text{(J) } 10\qquad
 
\text{(K) } 11\qquad
 
\text{(L) } 12\qquad
 
\text{(M) } 13\qquad
 
\text{(N) } 14\qquad
 
\text{(O) } 15\qquad
 
\text{(P) } 16\qquad</math>
 
<math>\text{(Q) } 55\qquad
 
\text{(R) } 63\qquad
 
\text{(S) } 64\qquad
 
\text{(T) } 2007\qquad</math>
 
 
 
==Solution==
 
 
 
The expression can be factored by repeatedly using the difference of squares.
 
<cmath>(2007^{512} + 1)(2007^{512} - 1)</cmath>
 
<cmath>(2007^{512} + 1)(2007^{256} + 1)(2007^{256} - 1)</cmath>
 
<cmath>(2007^{512} + 1)(2007^{256} + 1) \cdots (2007^1 + 1)(2007^1 - 1)</cmath>
 
Notice that <math>2007 \equiv 3 \pmod{4}</math>, so <math>2007^2 \equiv 1 \pmod{4}</math>.  Thus, in the expression <math>2007^a + 1</math>, if <math>a</math> is even, then the expression is congruent to <math>2</math> [[modulo]] <math>4</math>.
 
 
 
<br>
 
The remaining numbers to consider are <math>2008</math> and <math>2006</math>.  Factoring <math>2008</math> yields <math>8 \cdot 251</math>, and factoring <math>2006</math> yields <math>2 \cdot 1003</math>.
 
 
 
<br>
 
That means <math>2007^{1004} - 1</math> has <math>9+3+1 = 13</math> as the exponent of <math>2</math>, so the largest <math>n</math> that makes <math>2^n</math> a factor of <math>2007^{1004} - 1</math> is <math>\boxed{\text{(M) } 13}</math>.
 
  
 
==See Also==
 
==See Also==

Latest revision as of 22:03, 8 May 2024

What is 1+1?

No answer for the next few years, try again later! Thanks for your patience.

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 19
Followed by:
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4