Difference between revisions of "1967 AHSME Problems/Problem 34"

(Created page with "== Problem == Points <math>D</math>, <math>E</math>, <math>F</math> are taken respectively on sides <math>AB</math>, <math>BC</math>, and <math>CA</math> of triangle <math>ABC</m...")
 
m (Solution)
 
(4 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{A}</math>
+
WLOG, let's assume that <math>\triangle ABC</math> is equilateral. Therefore, <math>[ABC]=\frac{(1+n)^2\sqrt3}{4}</math> and <math>[DBE]=[ADF]=[EFC]=n \cdot \sin(60)/2</math>. Then <math>[DEF]=\frac{(n^2-n+1)\sqrt3}{4}</math>. Finding the ratio yields <math>\fbox{A}</math>.  -Dark_Lord
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1967|num-b=33|num-a=35}}   
+
{{AHSME 40p box|year=1967|num-b=33|num-a=35}}   
  
 
[[Category: Intermediate Geometry Problems]]
 
[[Category: Intermediate Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:13, 23 April 2024

Problem

Points $D$, $E$, $F$ are taken respectively on sides $AB$, $BC$, and $CA$ of triangle $ABC$ so that $AD:DB=BE:CE=CF:FA=1:n$. The ratio of the area of triangle $DEF$ to that of triangle $ABC$ is:

$\textbf{(A)}\ \frac{n^2-n+1}{(n+1)^2}\qquad \textbf{(B)}\ \frac{1}{(n+1)^2}\qquad \textbf{(C)}\ \frac{2n^2}{(n+1)^2}\qquad \textbf{(D)}\ \frac{n^2}{(n+1)^2}\qquad \textbf{(E)}\ \frac{n(n-1)}{n+1}$

Solution

WLOG, let's assume that $\triangle ABC$ is equilateral. Therefore, $[ABC]=\frac{(1+n)^2\sqrt3}{4}$ and $[DBE]=[ADF]=[EFC]=n \cdot \sin(60)/2$. Then $[DEF]=\frac{(n^2-n+1)\sqrt3}{4}$. Finding the ratio yields $\fbox{A}$. -Dark_Lord

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png