Difference between revisions of "User:Quantum-phantom"

(Created page with "<asy> usepackage("tkz-euclide"); label("\begin{tikzpicture}[scale=2.5] \tkzDefPoint(0:1){C}\tkzDefPoint(180:1){B}\tkzDefPoint(0:0){O} \tkzDefPoint(47:1){E}\tkzDefPoint(123:1){...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<asy>
+
By the law of cosines,
usepackage("tkz-euclide");
+
<cmath>\cos\angle DAC=\frac{221-CD^2}{220}=\cos\angle DBC=\frac{169-CD^2}{120},</cmath>
label("\begin{tikzpicture}[scale=2.5]
+
so <math>CD=\sqrt{\tfrac{533}{5}}</math>. Similarly, <math>AB=\tfrac{2 \sqrt{5} \sqrt{533}}{13}</math>. Let <math>AD\cap BC=I</math>, <math>AB\cap CD=J</math>, <math>OE\cap IJ=F</math>, then <math>OF\perp IJ</math> by Brocard's theorem. Since <math>ON\perp DC</math>, <math>OM\perp AB</math>, then
\tkzDefPoint(0:1){C}\tkzDefPoint(180:1){B}\tkzDefPoint(0:0){O}
+
\begin{align*}
\tkzDefPoint(47:1){E}\tkzDefPoint(123:1){F}
+
\frac{MP}{NP}&=\frac{MO\sin\angle MOE}{NO\sin\angle NOE}=\frac{\sin\angle MOE}{\sin\angle NOE}=\frac{\sin\angle IJA}{\sin(\pi-\angle DJI)}=\frac{\sin\angle IJA}{\sin\angle DJI}\\
\tkzInterLL(B,F)(C,E)\tkzGetPoint{A}
+
&=\frac{JA\cdot JI\sin\angle IJA}{IJ\cdot DJ\sin\angle DJI}\cdot\frac{DJ}{JA}=\frac{[IJA]}{[DJI]}\cdot\frac{DJ}{JA}=\frac{IA}{ID}\cdot\frac{DJ}{JA}.
\tkzDefPoint(270:1){M}\tkzInterLL(B,C)(M,E)\tkzGetPoint{X}
+
\end{align*}
\tkzInterLL(B,C)(M,F)\tkzGetPoint{Y}
+
By the law of sines,
\tkzInterLL(B,E)(C,F)\tkzGetPoint{H}
+
<cmath>\frac{IA}{ID}=\frac{IA}{IC}\cdot\frac{IC}{ID}=\frac{AB}{CD}\cdot\frac{AC}{BD}=\frac{55}{78},~\frac{DJ}{JA}=\frac{BD}{AC}=\frac{12}{11}.</cmath>
\tkzInterLL(A,H)(C,B)\tkzGetPoint{D}
+
So the answer is \(\tfrac{MP}{NP}=\frac{12}{11}\cdot\frac{55}{78}=\frac{10}{13}\).
\tkzInterLC(H,A)(O,B)\tkzGetPoints{z}{Z}
+
[img]https://img.picgo.net/2024/04/07/IMG_3135a148c4fcc55ace27.jpeg[/img]
\tkzDrawArc(O,C)(B)\tkzDrawPoints(A,...,F,H,X,Y,Z)
 
\tkzDrawSegments(A,B B,C C,A A,D B,E E,X F,Y C,F)
 
\tkzDrawSegments[dashed](Z,Y X,Z Z,B Z,C)
 
\tkzDefLine[tangent at=Z](O)\tkzGetPoint{tan}
 
\tkzDrawLine[add=.4 and -.6](Z,tan)
 
\tkzDefTriangleCenter[circum](X,Y,Z)
 
\tkzGetPoint{T}\tkzDrawCircle(T,X)
 
\tkzLabelPoints[below](X,Y)\tkzLabelPoints[above right](Z,D,E)
 
\tkzLabelPoints[below left](H,B)\tkzLabelPoints[below right](C)
 
\tkzLabelPoints[above left](A,F)
 
\end{tikzpicture}",origin);
 
</asy>
 

Latest revision as of 05:11, 15 April 2024

By the law of cosines, \[\cos\angle DAC=\frac{221-CD^2}{220}=\cos\angle DBC=\frac{169-CD^2}{120},\] so $CD=\sqrt{\tfrac{533}{5}}$. Similarly, $AB=\tfrac{2 \sqrt{5} \sqrt{533}}{13}$. Let $AD\cap BC=I$, $AB\cap CD=J$, $OE\cap IJ=F$, then $OF\perp IJ$ by Brocard's theorem. Since $ON\perp DC$, $OM\perp AB$, then \begin{align*} \frac{MP}{NP}&=\frac{MO\sin\angle MOE}{NO\sin\angle NOE}=\frac{\sin\angle MOE}{\sin\angle NOE}=\frac{\sin\angle IJA}{\sin(\pi-\angle DJI)}=\frac{\sin\angle IJA}{\sin\angle DJI}\\ &=\frac{JA\cdot JI\sin\angle IJA}{IJ\cdot DJ\sin\angle DJI}\cdot\frac{DJ}{JA}=\frac{[IJA]}{[DJI]}\cdot\frac{DJ}{JA}=\frac{IA}{ID}\cdot\frac{DJ}{JA}. \end{align*} By the law of sines, \[\frac{IA}{ID}=\frac{IA}{IC}\cdot\frac{IC}{ID}=\frac{AB}{CD}\cdot\frac{AC}{BD}=\frac{55}{78},~\frac{DJ}{JA}=\frac{BD}{AC}=\frac{12}{11}.\] So the answer is \(\tfrac{MP}{NP}=\frac{12}{11}\cdot\frac{55}{78}=\frac{10}{13}\). [img]https://img.picgo.net/2024/04/07/IMG_3135a148c4fcc55ace27.jpeg[/img]